
Disaggregated RocksDB - Benchmarking and Performance

Evaluation

Distributed Systems Lab Report

Duc Anh Phan Storm Timmermans Yuqi Yue
d.a.phan@student.vu.nl s.b.timmermans@student.vu.nl y.yue@student.vu.nl

Krijn Doekemeijer
Supervisor

k.doekemeijer@vu.nl

Abstract

Key-value stores are fundamental to modern distributed
systems, enabling high-performance data management for
cloud computing and big data applications. This lab ex-
ercise extends RocksDB, a widely used key-value store, by
introducing the ability to swap storage engines and evalu-
ate their performance. By implementing POSIX and iour-
ing storage engines and benchmarking them under local
storage scenarios, this work aims to analyze the perfor-
mance impact of hardware and software configurations,
providing insight into optimal storage setups for diverse
use cases.

1 Introduction

Efficient data storage and retrieval are critical to the per-
formance of distributed systems. Key-value stores, such
as RocksDB, have become integral to applications requir-
ing high throughput and low latency. However, their per-
formance is tightly coupled with the underlying storage
engine, which mediates between the database and the file
system. While RocksDB offers robust performance, its
lack of support for swapping storage engines limits com-
parative analysis and optimal system configurations.

This project addresses this limitation by enabling Rocks
DB to support multiple storage engines, including POSIX,
iouring and libaio and exposing this functionality through
a configurable interface. Furthermore, the project inves-
tigates the implications of disaggregated storage — an
emerging paradigm where compute and storage resources
are decoupled across separate nodes. This work bench-
marks the performance of local versus remote storage to
evaluate trade-offs in throughput, latency, and total cost
of ownership.
Our contributions can be summarized as follows:
(1) We provide a pluggable design in RocksDB that sim-
plifies swapping between POSIX, libaio, and io uring,
paving the way for future storage engine experimentation.
(2) We benchmark and profile these backends comprehen-
sively in local and cluster SSD setups, highlighting how
synchronous versus asynchronous calls and network la-
tency can drastically affect performance metrics such as
throughput, tail latency, and system call frequency.
(3) We analyze the overhead of tracing tools (strace vs.
perf) to underscore the need for lightweight performance
profiling.

Figure 1: High-Level Architecture of RocksDB

The remainder of this paper is organized as follows. Sec-
tion 3 details the functional and non-functional require-
ments that motivated our design. Section 4 describes how
we integrated multiple storage engines into RocksDB via
a new file-system backend layer and how we will perform
the benchmarking. Section 5 covers key implementation
details, especially the FSWritableFile and FSRandomAccessFile
interfaces as well as how we set up the experiments in de-
tails. Section 6 presents a thorough experimental evalu-
ation of performance, tracing overhead, and cluster-wide
implications. Finally, Section 7 draws conclusions and
discusses future directions such as fully asynchronous schedul-
ing and advanced polling optimizations in RocksDB.

2 Background

2.1 Key-Value Stores and RocksDB

Key-value stores represent a simple yet powerful database
paradigm where data is stored as key-value pairs. They
are widely used in distributed systems because of their
ability to handle large-scale data with low-latency op-
erations. RocksDB, developed by Meta [4], is a high-
performance embeddable key-value store optimized for
fast storage environments, making it a popular choice for
both industry and academia.

The following subsections is going to describe the basic
operations of RocksDB as depicted in Figure 1.

1



2.1.1 Data Organization and Storage Model

RocksDB uses a Log-Structured Merge (LSM) Tree de-
sign, where data is written to an in-memory structure
and periodically flushed to disk. This approach minimizes
random writes to storage, favoring sequential writes in-
stead. The key components include:

• MemTable: An in-memory data structure (usu-
ally a skip list or hash table) where writes are first
stored.

• Immutable MemTables: Once the MemTable is
full, it becomes immutable and is flushed to disk as
a Sorted String Table (SSTable).

• SSTables: On-disk files storing sorted key-value
pairs. SSTables are immutable and organized into
levels to facilitate efficient lookups.

2.1.2 Write Path

All writes are first logged to the Write Ahead Log (WAL)
for durability before being stored in the MemTable. This
ensures data persistence in case of a crash. The write is
then stored in the MemTable, allowing fast in-memory
updates. When the MemTable is full, it is flushed to
disk as an SSTable. This process involves sorting and
compressing the data.

2.1.3 Read Path

When a key is queried, RocksDB searches for the key in
the following order:

• MemTable (in-memory, fastest access).

• SSTables on disk, organized across levels.

Bloom Filters: RocksDB uses Bloom filters to op-
timize key lookups in SSTables, quickly determining if a
key does not exist in a given SSTable.

2.1.4 Compaction

To manage storage and improve read performance, RocksDB
performs compaction, a process of merging and reorga-
nizing SSTables. SSTables are organized into levels (e.g.,
Level 0, Level 1, etc.), with increasing size and fewer files
at higher levels. Data is compacted and merged as it
moves to higher levels.

2.2 Storage Engines

The storage engine serves as the interface between the
database and the file system, influencing performance
metrics such as throughput and latency. Popular stor-
age engines include POSIX, libaio, io uring, and SPDK,
each offering distinct trade-offs in terms of performance
and complexity. POSIX is a traditional, widely-supported
API, whereas iouring is a modern alternative designed to
exploit asynchronous I/O operations for higher perfor-
mance. In this assignment, we primarily focus on three
storage engines:

• POSIX I/O is the standard and most basic inter-
face for performing I/O on Linux systems. It pro-
vides synchronous (blocking) operations. The most
common operations, like read() and write(), block
the application until the operation completes.

• libaio provides asynchronous I/O capabilities, al-
lowing an application to start multiple I/O opera-
tions without waiting for them to complete. It uses
kernel support for asynchronous I/O

• iouring is the newest Linux I/O interface, designed
to overcome limitations in existing asynchronous
I/O frameworks like libaio. It provides a highly
efficient mechanism for submitting and retrieving
I/O operations using ring buffers, minimizing sys-
tem calls by using shared memory ring buffers for
submission and completion queues.

3 Requirements

3.1 Functional requirements

• Add a RocksDB file system backend that does a
passthrough to the underlying file system

• Add functionality to the file-system backend to change
the storage engine and incorporate it

• Add POSIX, libaio, and iouring as possible storage
engine backends.

• Benchmark dbbench on top of the file-system back-
end and evaluate the impact of the storage engine
in the db bench benchmark.

3.2 Non-functional requirements

• Benchmarks should be representative of real-world
workloads, ensuring the results apply to practical
scenarios.

• Benchmarks should evaluate not only fundamental
metrics such as throughput and latency but also
include the overhead of system calls.

• Results should provide insights into the trade-offs
between local and disaggregated storage setups, help-
ing in decision-making for diverse use cases.

4 Design

4.1 Extensible RocksDB

In this section, we present the high-level design of our
extensible RocksDB, which supports swapping the stor-
age backend while adhering to the functional and non-
functional requirements outlined in Section 3.

The core of our design involves creating an interface
that all RocksDB I/O operations—namely flushing, com-
paction, and reads—use. This simple design is illustrated
in Figure 2.

Our swappable system forms the cornerstone of the
extensible RocksDB design. Its purpose is to abstract
I/O operations, ensuring that the upper layer of RocksDB
interacts with the underlying storage system exclusively
through this I/O interface. This modular approach en-
ables RocksDB to remain flexible, adaptable, and opti-
mized for diverse workloads. The backend provides a uni-
fied, transparent interface, ensuring seamless interaction
with RocksDB regardless of the chosen storage engine.

2



Figure 2: High Level Architecture of Extensible RocksDB

This abstract interface is implemented by various un-
derlying storage backends, each using its method to in-
teract with the system (e.g., Linux). Examples of these
interactions include using popular mechanisms such as
POSIX system calls, libaio, or io uring.

Users can easily select and configure their preferred
storage engine using one of the following methods:

• Command-line option for db bench: Users can
specify the storage backend via the --fs uri flag.

• RocksDB API: Users can configure the desired
backend in C++ using DBOptions with the fs uri

parameter.

4.2 Experiment Design

To evaluate the impact of different storage engines and
configurations on RocksDB’s performance in local storage
setups, the initial focus is on static and fixed benchmarks.
These benchmarks serve to validate the functionality of
new file systems while also uncovering performance over-
head differences among various backends. This structured
approach ensures a stable foundation for subsequent ex-
perimentation.

Building on this, real-world applicability becomes a
critical aspect of the design. Realistic workloads are es-
sential for deriving meaningful insights, and this can be
achieved by incorporating traces or employing standard-
ized frameworks such as YCSB, which are designed to
simulate real-world application scenarios effectively.

Furthermore, the design emphasizes the importance
of using comprehensive metrics to thoroughly assess sys-
tem performance. We begin by focusing on two key met-
rics—throughput and tail latency. Throughput measures
how much data the system can process effectively within
a given timeframe. High throughput in a database in-
dicates the ability to handle a large number of requests
or operations efficiently, which is critical in environments
with continuous high-volume data transactions. Tail la-
tency, on the other hand, refers to the small percentage
of requests that take significantly longer to process than
the average. While most requests may have low latency,
these outliers can substantially impact overall system per-
formance and user experience. Solely focusing on average
latency can be misleading; therefore, we emphasize la-
tency percentiles. Furthermore, we also include advanced
metrics to provide a deeper understanding of system be-
havior and overhead, offering valuable insights into the
trade-offs associated with different storage engine config-
urations. Those metrics including:

• Syscall counts and syscall time: The core differ-
ences between storage backends lie in how they in-
teract with the system, such as their use of system
calls. Monitoring these metrics helps identify per-
formance differences between backends.

• CPU utilization: While a specific backend may de-
liver better performance, it might exhaust system
resources. Understanding resource utilization across
different backends informs trade-offs between per-
formance and resource usage, enabling better system-
level decisions.

5 Implementation

5.1 Extensible RocksDB

All write operations (e.g., writes to the Write Ahead Log
(WAL) and SSTables) utilize the FSWritableFile in-
terface. Meanwhile, read operations to metadata files
such as the OPTIONS file, MANIFEST file, and CUR-
RENT file using the FSSequentialFile interface. Reads
to SSTables are handled using the FSRandomAccessFile

interface, designed for random access patterns in data re-
trieval.

Given the central role of these interfaces, our focus is
on implementing two key components: FSWritableFile

and FSRandomAccessFile. These components are critical
for RocksDB’s I/O operations.

• FSWritableFile: The two primary methods to im-
plement are Write and WritePositioned. Each
backend storage system requires its specific imple-
mentation:

– LibaioWritableFile: Implements Write and
WritePositioned using asynchronous I/O sys-
tem calls provided by libaio.

– IOUringWritableFile: Leverages io uring to
handle asynchronous writes with minimal over-
head through submission and completion queues.

– PosixWritableFile: The default implemen-
tation in RocksDB, which uses traditional syn-
chronous POSIX system calls.

For each method, the system calls (e.g., write(),
pwrite()) are adapted to suit the specific charac-
teristics of the backend storage engine.

• FSRandomAccessFile: The primary method to im-
plement is Read. Similar to FSWritableFile, this
implementation is tailored for each backend:

– LibaioRandomAccessFile: Uses libaio sys-
tem calls to perform asynchronous read oper-
ations.

– IOUringRandomAccessFile: Utilizes io uring

for high-performance asynchronous read access.

All methods discussed (Read, Write, WritePositioned)
are designed to execute synchronously, ensuring that the
operations return results immediately without deferring
execution. To achieve this, synchronous I/O operations
in libaio rely on io getevents to wait for completion,
while io uring operations use io uring wait cqe for polling
or waiting for completion.

3



At a higher level, these file interfaces are managed
by the FileSystem interface, which oversees all file oper-
ations and serves as the main interface for RocksDB to
interact with the underlying file system. The FileSystem
interface is modular, allowing the integration of different
backends:

• IOUringFileSystem: Implements the file system
using io uring for all read and write operations.

• LibaioFileSystem: Provides an implementation based
on libaio.

• PosixFileSystem: Uses the default POSIX inter-
face for traditional synchronous I/O.

To support flexibility and experimentation, we imple-
ment this file system layer as a plugin for RocksDB. Users
can specify the desired backend storage system using the
fs uri option. For example, setting fs uri://libaio

configures RocksDB to use the LibaioFileSystem, while
fs uri://iouring selects the IOUringFileSystem. This
design simplifies the integration process and allows devel-
opers to easily switch between backends based on their
workload requirements.

Overall, this approach provides a robust, extensible
I/O subsystem for RocksDB, capable of supporting mod-
ern storage solutions while remaining backward compat-
ible with traditional POSIX-based systems.

We next experiment with the backends on a real clus-
ter provided by our supervisor. Another emerging trend
in storage is disaggregated storage, where compute and
storage nodes are physically separate. In our setup, we
will deploy remote SSDs and integrate them into the clus-
ter, allowing us to compare performance between locally
attached SSDs and remote SSDs.

5.2 Experiment Setup

5.2.1 Static db bench

We first utilize few popular db bench benchmarks - to test
the operations of the plugin as well as to gain few insights
into the performance of different backends. We choose
fixed-size (key, value) pairs (16-byte keys and 1000-byte
values) and reserve only 2 MiB for the write buffer. We
perform the benchmark with direct I/O to eliminate the
effects of page-based cache. Two metrics we observe through
this benchmark are throughput and latency.

5.2.2 Real-world workload

Researchers usually consider the workloads generated by
YCSB to closely resemble real-world workloads. YCSB
can generate queries with statistical properties similar to
those of realistic workloads, including query type ratios,
KV-pair hotness distribution, and value size distribution.

However, the observed results reveal discrepancies be-
tween YCSB-generated workloads and replayed workloads:

• The number of block reads from YCSB is at least
7.7x that of the replayed results, and the amount
of read-bytes is approximately 6.2x. These results
indicate an extremely high read amplification.

• The number of block cache hits in YCSB workloads
is only about 0.17x that of the replayed results.

To better emulate real-world workloads, [2] proposes
a key-range based model. In this model, the entire key-
space is partitioned into several smaller key-ranges. In-
stead of modeling KV-pair accesses based on global key-
space statistics, this approach focuses on the hotness of
individual key-ranges. By doing so, the generated work-
loads more accurately reflect the access patterns observed
in realistic scenarios. [2] developed a benchmark called
“mixgraph” in db bench, which can use the four sets
of parameters to generate the synthetic workload. The
workload is statistically similar to the original one.

We used the parameters below to generate the work-
load that simulates the queries of ZippyDB described in
[2].

db_bench --benchmarks="mixgraph" --fs_uri=efs://

libaio -

use_direct_io_for_flush_and_compaction=true

-use_direct_reads=true -cache_size =268435456

-keyrange_dist_a =14.18 -keyrange_dist_b

= -2.917 -keyrange_dist_c =0.0164 -

keyrange_dist_d = -0.08082 -keyrange_num =30 -

value_k =0.2615 -value_sigma =25.45 -iter_k

=2.517 -iter_sigma =14.236 -mix_get_ratio

=0.85 -mix_put_ratio =0.14 -mix_seek_ratio

=0.01 -sine_mix_rate_interval_milliseconds

=5000 -sine_a =1000 -sine_b =0.000073 -sine_d

=4500 --perf_level =2 -reads =8400000 -num

=1000000 -key_size =48

5.2.3 Strace

strace [1] is a powerful diagnostic, debugging, and mon-
itoring tool in Linux that is widely used to trace and
analyze system calls and signals executed by a program.
A system call (commonly referred to as a syscall) serves
as the interface between user-space applications and the
Linux kernel. Through syscalls, user-space programs can
request services from the operating system, such as per-
forming file I/O operations, managing processes, allocat-
ing memory, or handling network communication.

By intercepting and logging syscalls made by a pro-
gram, strace provides developers and system adminis-
trators with a detailed view of how the program interacts
with the operating system. This insight can help identify
performance bottlenecks, debug system-level errors, and
optimize resource usage. Additionally, strace can log the
arguments passed to syscalls, their return values, and the
duration of each syscall, offering valuable information for
performance analysis.

In this assignment, we leverage the capabilities of strace
to evaluate the behavior of db bench across different stor-
age backends. Specifically, strace is used to count the
number of syscalls invoked by db bench while operating
through supported backends such as POSIX, io uring,
and libaio. This information is critical for understand-
ing the system’s behavior under different configurations,
as the frequency and type of syscalls can significantly in-
fluence performance.

Furthermore, we measure the latency of each syscall
using strace. Syscall latency represents the time taken
for the kernel to execute the requested operation and re-
turn control to the application. By analyzing this data,
we can interpret the performance differences between back-
ends, identifying the impact of various factors such as I/O
scheduling, context switching, and kernel overhead. This
analysis plays a key role in assessing the efficiency of each

4



Figure 3: Throughput - local benchmark

storage backend and its suitability for db bench’s work-
load.

5.2.4 perf

perf [3] is a powerful performance analysis and profil-
ing tool built into the Linux kernel. It enables devel-
opers, system administrators, and performance engineers
to monitor and analyze the performance characteristics
of applications, processes, or the entire system. By lever-
aging hardware performance counters, software events,
and tracepoints, perf provides detailed insights into how
a system or application uses its resources.

strace incurs higher overhead because it operates by
attaching to a process using the ptrace system call, in-
tercepting and monitoring every system call made by the
traced process. Each intercepted syscall requires a con-
text switch between the traced process and strace, which
introduces significant overhead, especially for programs
with frequent system calls. Additionally, strace logs de-
tailed information for each syscall, including its name,
arguments, return value, and execution time. Writing
this data to stdout or a file further amplifies the over-
head, particularly for syscall-intensive applications. In
contrast, perf uses kernel-level instrumentation and di-
rect access to hardware performance counters, enabling
it to collect aggregated performance data with minimal
interference. By avoiding frequent context switches and
detailed logging for each event, perf maintains a much
lower overhead compared to strace.

5.2.5 Cluster setup

In this experiment, we used a cluster that provides two
configurations—virtual SSD and remote SSD. We com-
piled our code on the remote cluster and set up the ex-
periment using the provided script.

6 Results and Discussion

6.1 Local Benchmark

In our local SSD throuhput experiments (Figure 3), fillseq
throughput for posix and libaio remains around 62–
64MB/s, whereas io uring stands lower at approximately
28MB/s. All three engines perform more closely under
fillrandom, near 16–17MB/s. They also converge in read-
random at about 1.5–1.6MB/s, suggesting no clear ad-
vantage for any interface in random reads. Finally, read-

Figure 4: ZippyDB workload - local benchmark

Figure 5: Tracing tool impact - local benchmark

seq shows posix leading at 84MB/s, followed by libaio

at 78MB/s and io uring at 66MB/s, indicating that
io uring generally trails the more mature engines in se-
quential workloads.

Latency results (Figure 6) highlight that posix and
libaio maintain lower microsecond-level latencies under
fillseq and fillrandom, with io uring exhibiting tens of
microseconds at lower percentiles and rising more sharply
at the tail. For readrandom, all three settle in the hun-
dreds of microseconds at the median, diverging moder-
ately at the 99% and 99.9% levels. Under readseq, median
latencies are sub–2µs for every engine, though io uring

again shows the largest spikes at the tail. Overall, posix
and libaio remain more stable across percentiles, whereas
io uring demands additional tuning or higher concur-
rency to match or surpass their performance fully.

In the synthetic ZippyDB workload (Figure 4), POSIX
tops out at approximately 131MB/s with a latency of
around 6.6 µs, closely followed by libaio at 128MB/s
and 6.8 µs. In contrast, io uring provides noticeably
lower throughput, at about 64MB/s, and has a higher
latency of roughly 13.4 µs. Overall, POSIX and libaio

display comparable performance in both metrics, while
io uring lags significantly in throughput and exhibits
higher latency.

To study the impact of different functions on through-
put and latency, we measured the time spent on system
calls using both strace and perf. Figure 5 compares the
throughput of db bench with either tracing tool or not.
With strace enabled, throughput plummets significantly
across all three backends, reflecting the overhead of inter-
cepting and logging each system call. By contrast, using
perf introduces only a modest performance hit compared

5



(a) fillseq (b) fillrandom

(c) readrandom (d) readseq

Figure 6: Latency - local benchmark

to no tracing at all. For example, POSIX and libaio

each exceed 80MB/s without tracing but drop to around
10MB/s when strace is active; with perf, their through-
put remains in roughly the same high range as the “no
trace” scenario. io uring also suffers more from strace

than from perf, though its overall throughput stays lower
than POSIX and libaio under all conditions. These re-
sults confirm that strace imposes a substantially greater
overhead on db bench measurements than perf, making
perf the more efficient tool for gathering profiling data
without severely distorting performance outcomes.

Therefore, we decide to use perf to analyze the impact
of different functions on the overall performance. Using
perf to analyze the three engines (POSIX, libaio, and
io uring) reveals that their respective system consumes
most execution time calls—read and write for POSIX,
io getevents and io submit for libaio, and submit and
get completion queue for io uring (see Figures 7, 8,
and 9). Although libaio and io uring both support asyn-
chronous operations, the current RocksDB codebase lacks
a mechanism to exploit true latency hiding; simple im-
plementations of these engines still end up blocking until
operations are complete. In theory, this negates any im-
mediate advantage of switching from POSIX to an asyn-
chronous engine. However, io uring has the potential
to reduce the overall number of system calls, thereby im-
proving latency and throughput if implemented with the
full polling mode. Incorporating such a mechanism would
require significant re-engineering of RocksDB to eliminate
blocking paths, so we defer this work to the future.

Overall, our local SSD experiments confirm that POSIX
and libaio consistently deliver higher throughput and
more stable latencies, while io uring lags behind unless
further tuned. Tracing with strace introduces a signifi-
cant performance penalty, whereas perf proves more ef-

Figure 7: Posix - local benchmark

ficient for gathering profiling data. Analyzing these en-
gines reveals that blocking paths in RocksDB diminish
the advantages of asynchronous I/O, although io uring

remains promising if integrated with a non-blocking de-
sign. Having established these baseline insights, we now
move on to real-world cluster benchmarking to evaluate
whether the observed patterns hold at a larger scale and
in production-like environments.

6.2 Cluster Benchmark

Our cluster throughput experiments evaluated virtual and
remote SSD setups using the same benchmarks as in the
local tests. For the fillseq workload, in the virtual setup
(Figure 10), libaio achieves the highest throughput at
240.5 MB/s, followed closely by POSIX with 219 MB/s.
However, io uring lags far behind with only 15.8 MB/s.
In contrast, for the remote setup (Figure 10), both POSIX

and libaio show a noticeable drop in throughput to 166.7
MB/s and 159 MB/s, respectively, while io uring con-
tinues to deliver low performance at 13.8 MB/s.

6



Figure 8: Libaio - local benchmark

Figure 9: iouring - local benchmark

For the readrandom workload, the performance across
backends in the virtual setup is relatively close, with through-
put ranging from 81.8 MB/s for libaio to 89.1 MB/s for
POSIX. Interestingly, in the remote setup, io uring out-
performs the other two backends, achieving 91.3 MB/s
compared to 79.6 MB/s for libaio and 50.8 MB/s for
POSIX. This result suggests that io uring can handle ran-
dom reads more efficiently in remote scenarios, likely due
to its lower syscall overhead.

For the readseq workload, POSIX achieves the highest
throughput in the virtual setup, reaching 903.6 MB/s.
libaio and io uring follow with 759.8 MB/s and 846.4
MB/s, respectively. In the remote setup, io uring sur-
prisingly achieves the highest throughput at 861.1 MB/s,
surpassing both libaio (711.5 MB/s) and POSIX (557.2
MB/s). This result highlights the potential of io uring

for handling large sequential reads in remote environ-
ments, potentially due to its ability to reduce syscall la-
tency through polling mechanisms.

As shown in Figure 11, comparing the virtual and re-
mote setups reveals several key trends. For fillseq, both
POSIX and libaio experience a significant drop in through-
put (approximately 25%) in the remote setup compared
to the virtual one, while io uring exhibits minimal change.
This minimal drop for io uring reflects its lower initial
performance in the virtual environment. In readseq, the
throughput for POSIX and libaio decreases by 38% and
6%, respectively, in the remote setup, whereas io uring

demonstrates a slight increase in throughput. Lastly, in
readrandom, POSIX shows a noticeable drop in through-
put (around 43%) in the remote setup compared to the
virtual one, while libaio remains relatively stable with
only a slight decrease. Interestingly, io uring demon-
strates a slight increase in throughput (around 4%) in
the remote setup, outperforming both POSIX and libaio

in this workload.
The results highlight the impact of network-induced

latency on throughput, with POSIX and libaio showing
drops in write-intensive and sequential workloads in the
remote setup. io uring, while underperforming in the
virtual setup, shows potential advantages in handling re-
mote storage, especially in read-heavy workloads, due to
its reduced syscall overhead and asynchronous nature.

Latency results in the virtual cluster benchmark (Fig-
ure 12) indicate that for the fillseq workload, POSIX and
libaio exhibit similar latency behavior across all per-
centiles, with a gradual increase from 1.63 µs and 1.53 µs
at the 50% percentile to 13.42 µs and 9.99 µs at the 99.9%
percentile, respectively. In contrast, io uring maintains
significantly higher latency across all percentiles, starting
at 31.06 µs at the 50% percentile and rising to 75.99 µs at
the 99.9% percentile, highlighting its poorer performance
in sequential write workloads.

For the readrandom workload, all three backends ex-
hibit similar and stable latency across all percentiles, with
median latencies ranging from 5.11 µs to 5.51 µs. Even
at the 99% and 99.9% percentiles, the differences remain
minimal, with latencies around 10 µs and 20 µs, respec-
tively, indicating that none of the backends faces signifi-
cant performance degradation under random read work-
loads in the virtual setup.

In the readseq workload, all three backends show com-
parable and stable performance up to the 75% percentile,
with median latencies of 0.58 µs. Beyond the 75% per-
centile, latencies increase, with libaio showing the high-
est rise to 8.03 µs at the 99.9% percentile, followed by
io uring at 6.31 µs and POSIX at 5.94 µs. This indicates
that while the three backends handle sequential reads well
at lower percentiles, libaio experiences slightly higher
tail latency under high contention.

In the remote cluster benchmark (Figure 13), fillseq
results show that while POSIX and libaio maintain rela-
tively low latencies at the 50% and 75% percentiles, with
values ranging from 1.85 µs to 2.8 µs, they exhibit no-
ticeable increases at higher percentiles. At the 99.9%
percentile, POSIX and libaio reach 17.43 µs and 17.75
µs, respectively. Meanwhile, io uring shows consistently
higher latency across all percentiles, starting at 34.94 µs
at the 50% percentile and increasing sharply to 115.13 µs
at the 99.9% percentile, indicating its poorer performance
under sequential write-intensive workloads in remote se-
tups.

For the readrandom workload, POSIX exhibits a dra-
matic rise in latency at higher percentiles, reaching 164.97
µs at the 99% percentile and 242.49 µs at the 99.9% per-
centile. In contrast, both libaio and io uring show rel-
atively stable performance, with their 99.9% percentile
latencies remaining under 21 µs. Notably, io uring de-
livers slightly lower latency than libaio at the higher
percentiles, indicating its potential advantage in handling
random reads in remote environments.

For the readseq workload, all three backends perform
similarly up to the 75% percentile, with median latencies
of 0.58 µs. However, beyond the 75% percentile, POSIX
experiences a steeper increase, reaching 14.46 µs at the
99.9% percentile, while libaio and io uring maintain
lower tail latencies of 9.62 µs and 8.38 µs, respectively.
This suggests that while all backends handle sequential
reads well at lower contention levels, POSIX suffers from

7



(a) virtual (b) remote

Figure 10: Throughput - virtual & remote cluster benchmark

(a) fillseq (b) readseq (c) readrandom

Figure 11: Throughput - virtual vs remote cluster benchmark

higher tail latency under heavy contention in remote se-
tups.

In both virtual and remote cluster benchmarks, fillseq
exhibits a similar trend, with POSIX and libaio main-
taining lower latencies across percentiles compared to io uring,
which consistently shows higher latency, particularly at
the tail. However, the trends for readrandom and read-
seq differ between the two setups. In the virtual setup,
all three backends show stable latency for readrandom,
while in the remote setup, POSIX exhibits a significant
rise in tail latency, whereas libaio and io uring remain
relatively stable. For readseq, the virtual setup shows an
increase in tail latency for libaio, while in the remote
setup, POSIX experiences a noticeable increase in tail la-
tency.

Overall, the cluster benchmark results demonstrate
distinct throughput and latency behaviors in virtual and
remote SSD setups, highlighting the influence of work-
load types and backend characteristics. For throughput,
readseq consistently outperforms other workloads across
all backends in both virtual and remote setups. While
POSIX and libaio show better performance in fillseq than
in readrandom, io uring presents an inverse trend, with
relatively low throughput in fillseq but slightly higher
performance in readrandom, particularly in the remote
setup where it even surpasses both POSIX and libaio.
These trends suggest that io uring demonstrates im-
proved adaptability for random read-heavy workloads,
especially in high-latency environments. In terms of la-
tency, fillseq exhibits similar trends across virtual and
remote setups, with POSIX and libaio maintaining lower
latency than io uring. However, readrandom and read-
seq reveal differing patterns: in the virtual setup, all
three backends show stable performance in readrandom,

whereas in the remote setup, POSIX faces significant tail
latency increases, while libaio and io uring remain sta-
ble. For readseq, libaio exhibits higher tail latency in the
virtual setup, while POSIX shows greater tail latency in
the remote setup. These results indicate that while POSIX
and libaio excel in low-latency environments, io uring

proves more resilient under high-latency conditions, espe-
cially for random reads.

7 Conclusion

In this work, we designed and implemented an exten-
sible RocksDB framework capable of seamlessly swap-
ping out the underlying storage engine. By encapsulat-
ing I/O operations behind a common file interface, our
design allowed RocksDB to support POSIX, libaio, and
io uring backends. We integrated these backends into
db bench and extensively profiled their performance on
both local and cluster (virtual and remote SSD) setups
under different workloads, including synthetic (fillseq, fill-
random, readrandom, readseq) and more realistic bench-
marks such as a ZippyDB-like workload.

Key findings from our evaluation include:

• Local SSD Performance. On local SSDs, POSIX
and libaio generally offered higher throughput and
lower latency than io uring in both sequential and
random access patterns. In particular, posix and
libaio showed similar performance in sequential
writes (fillseq) and reads (readseq). io uring lagged
behind, especially in sequential workloads.

• Cluster SSD Performance. In more realistic en-
vironments (virtualized SSDs and remote SSDs),
we observed more nuanced behaviors. While POSIX

8



(a) fillseq (b) readrandom (c) readseq

Figure 12: Latency - virtual cluster benchmark

(a) fillseq (b) readrandom (c) readseq

Figure 13: Latency - remote cluster benchmark

and libaio still excelled in write-intensive and se-
quential workloads, io uring closed the gap—and
in some remote scenarios even outperformed the
other backends—in read-heavy workloads. This im-
provement seems tied to io uring’s ability to re-
duce syscall overhead when latency is primarily network-
driven.

• Latency & Tail Behavior. Across setups, posix
and libaio often maintained lower median laten-
cies, but exhibited higher tail-latency spikes in cer-
tain cluster workloads. Meanwhile, io uring some-
times struggled at the local setup but displayed
promising tail-latency characteristics for remote, ran-
dom read-intensive workloads.

• Tracing Overheads. Our comparison of strace
and perf for profiling underscored that strace in-
troduces a severe performance penalty—throughput
plummets by as much as an order of magnitude due
to frequent context switches and detailed syscall
logging. perf, on the other hand, incurred signifi-
cantly lower overhead, making it more suitable for
real-time performance analysis of RocksDB.

Lessons learned. First, integrating asynchronous
I/O interfaces (like libaio and io uring) into RocksDB
does not automatically deliver performance gains if the
upper layers still block on I/O completions. A key insight
is that fully exploiting asynchronous capabilities requires
rethinking the way RocksDB schedules and pipelines I/O
operations. Second, while posix often provides competi-
tive performance in low-latency environments, io uring

offers considerable promise in higher-latency environments
once tuned to run in an asynchronous or polled mode. Fi-
nally, tracing and debugging methodologies should care-
fully account for overheads: strace can drastically dis-
tort results, whereas kernel-level sampling via perf pro-
vides deeper insights with minimal disruption.

Future work will focus on:

• Non-blocking Integration. Extending RocksDB’s
design to better pipeline reads and writes, reducing
blocking paths so that backends like libaio and
io uring can fully hide latencies and exploit paral-
lelism.

• Tuning and Polling Modes. Investigating io uring’s
submission and completion polling for higher through-
put and more stable tail latency.

• Production-like Traces. Incorporating extensive
real-world traces (beyond YCSB and synthetic work-
loads) to capture nuanced access patterns, caching
behaviors, and scheduling artifacts in production
deployments.

Overall, this work demonstrates the viability and po-
tential of building an extensible I/O subsystem in RocksDB
to leverage modern asynchronous interfaces. While tradi-
tional posix I/O remains surprisingly competitive, libaio
and io uring can outshine it under specific workload
characteristics and latencies, particularly with future en-
hancements to RocksDB’s internal design that capitalize
on genuine asynchronous operations.

References

[1] strace. https://strace.io/. Accessed: 2025-01-15.

[2] Zhichao Cao, Siying Dong, Sagar Vemuri, and David
H. C. Du. Characterizing, modeling, and benchmark-
ing rocksdb key-value workloads at facebook. In Pro-
ceedings of the 18th USENIX Conference on File and
Storage Technologies, FAST’20, page 209–224, USA,
2020. USENIX Association.

[3] Arnaldo Carvalho de Melo and Red Hat. The new
linux ’ perf ’ tools. 2010.

[4] Siying Dong, Andrew Kryczka, Yanqin Jin, and
Michael Stumm. Rocksdb: Evolution of development

9



priorities in a key-value store serving large-scale ap-
plications. ACM Trans. Storage, 17(4), October 2021.

A Time sheets

Table 1: Time Scheduling

Activity Time spent (hours)
think-time 50
dev-time 30
xp-time 75
analysis-time 45
write-time 50
wasted-time 10
total-time 260

Github: https://github.com/anhphantq/efs.git

10


