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Abstract

RocksDB is a high-performance embedded Key-Value store and a critical piece
of computing infrastructure where throughput and latency are important, which
includes CockroachDB and Cassandra . Recent work in storage space has resulted
in the development of io _uring, leading us to an opportunity to attempt to improve
understanding and or performance of RocksDB and io uring by combining the two.
We designed and implemented engineswap, a RocksDB plugin able to switch storage
API between io_uring, posix and libaio. When evaluating engineswap we found
io_uring to have worse throughput and latency compared to the other engines.
Additionally, we found the file system latency to increase when comparing posix
and io_ uring.
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1 Introduction

Key-Value (KV) stores are programs able to store large amounts of data into files on
a file-system and retrieve the data by searching for its associated key. Such KV stores
like RocksDB [I] have been used in many other database projects like MySQL [2], Mon-
goDB [3] and CockroachDB [4], themselves often used in many applications including web
applications [5] and control planes [6], positioning themselves in the core of computing
infrastructure. Therefore, efforts to improve KV stores like RocksDB may be helpful to
many projects.

Rocksdb uses the Posix system calls to interface with storage devices (I/O) because it
is highly supported across many Operating systems. However, recent developments have
built new interfaces for I/O including libaio and io uring, which have shown promising
performance in previous studies [7].

This project aims to understand performance differences between the io uring, posix
and libaio interfaces by extending the capabilities of RocksDB to support configurable
storage engines. Specifically, the goal is to integrate the ability to dynamically switch be-
tween storage engines, such as POSIX, io _uring, and potentially libaio, within RocksDB’s
file system backend. This functionality will allow end-users to configure storage engines
through a simple interface and evaluate their impact on database performance.

Additionally, this project presents the design and implementation of experimental
benchmarks to measure performance across various configurations. RocksDB’s built-in
benchmarking tool, ‘db bench‘, will serve as the primary platform for testing. The
benchmarks will assess factors such as key-value pair size and workload intensity.

This report brings the following contributions:

e We design a RocksDB plugin enabling a switch between using io_uring and posix
APT’s. The design and its motivation is explained in section

e We implement engineswap and a system around it. Additionally, we published a
fork from RocksDB with the engineswap plugin to GitHub:
https://github.com/JoachimBose /rocksdb-VE
The implementation is explained in section [4

e We Evaluate the use of io _uring with and without submission queue polling, posix
and libaio for RocksDB using engineswap and find that throughput and latency
with io uring are slightly worse with libaio, worse with plain io uring and much
worse when io_uring submission queue polling is enabled. Additionally, we find the
file system latency to be the culprit of the increase in latency in io uring. This
evaluation is in section [0l

The rest of this report is structured by providing some background in section [2| about
RocksDB and storage APIs, followed up by section [3] where we design engineswap. Next,
we implement engineswap in section [4f and use it for experiments in chapter
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2 Background

Key-value (KV) stores have become fundamental components of modern computing sys-
tems, enabling efficient storage and retrieval of data through the use of simple key-value
pairs. Key-value pairs can be inserted using a put operations and retrieved with a get op-
eration. These systems are widely used in cloud-based applications, big data processing,
etc. , where performance in terms of latency, throughput, and scalability is critical.

2.1 RocksDB

Our work is concerned with, RocksDB [I], a KV store developed by Meta. It is built
on the Log-Structured Merge (LSM) tree, a data structure that provides efficient write
and read operations by organizing data into sequentially written immutable files called
SSTables (Sorted String Tables). When data is inserted or updated, it is first written
to an in-memory write-ahead log (WAL) to ensure durability, followed by insertion into
an in-memory MemTable. Once the MemTable reaches its capacity, it is flushed to disk
as an SSTable. This hierarchical organization helps RocksDB achieve low-latency writes
while optimizing storage utilization [§].

The core operation of the LSM tree in RocksDB involves periodic compaction, a process
in which smaller SSTables are merged into larger ones to reduce fragmentation and ensure
efficient reads. Compaction minimizes the number of SSTables that need to be queried
during data retrieval, effectively balancing write amplification and read amplification.

2.2 Storage APIs

Each KV store uses a storage engine, which serves as the intermediary between the
database system and the underlying file system and hardware, in Rocksdb’s case this
is just a conversion between Rocksdb’s internal file system API and the posix APIL. This
posix API provides write() and read() synchronous system calls, usually through the kernel
to the file system. However, emerging storage technologies like io uring have introduced
opportunities for improved I/0 efficiency, especially in high-performance applications [9].
In this work, we focus mainly on io uring and posix, due to their promising performance
and relevance, sometimes also libaio for additional context.

2.2.1 Posix I/O

posix is the traditional Unix-based file I/O interface. posix I/O follows a synchronous,
blocking model by default, where each 1/O operation (e.g., read (), write()) blocks the
calling thread until the operation is completed. posix is widely used, as its synchronous
nature makes it simple to use. However, the synchronous design also has downsides. In
scenarios involving high concurrency, the performance and scalability of posix may suffer
as multiple threads or processes are needed to parallelize I/O operations.
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Figure 1: Control flow of posix and io_uring

2.2.2 libaio

libaio (Linux asynchronous I/O library) provides a user-space API for asynchronous I/0O
operations in Linux, not to be confused with posix aio. Unlike posix AIO, libaio offers an
interface that enables applications to issue asynchronous read and write requests using
syscalls. This is achieved through system calls such as io_submit () for submitting I/0
requests and io_getevents() for retrieving the results of completed operations [I0]. The
events are queued up in kernel space, but the API was not always asynchronous as it
promised. Additionally, does not support buffered I0.

2.2.3 io_uring

io uring, introduced in the Linux kernel 5.1, provides a modern asynchronous I/O inter-
face with reduced system call overhead. Two queues named the submission queue (SQ)
and completion queue (CQ) are placed in the shared memory between the operating sys-
tem (and thus the file system) and the application process. The application can then
submit submission queue events (SQE), which the kernel will process on separate kernel
worker threads. This allows I/O to be asynchronous, and to mitigate the context switch.

In this work we consider a configuration where Rocksdb is deployed on a Linux kernel
using an ext4 or xfs file system. In figure (1| we show what the code paths look like from
an architectural perspective, with the relavant details for performance.

In the figure, The left application uses posix to interface with the kernel, and the right
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application uses io uring to interface with the kernel. When the posix application does
a read or write call, the posix code path immediately talks to the virtual file system, and
its underlying stack whereas the io uring application code path only submits its SQE
to the queue and then returns. The kernel then has 10 worker threads executing the
request which then submit completion queue events (CQEs). The application checks the
completion queue for completed events.
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3 Design

To design our system, we use the Atlarge design process [11] and start by investigating
their performance requirements. Our task is to assist in the development of faster key-
value stores by making it easy to benchmark different storage APIs in RocksDB. We need
to be able to easily switch between backends without recompilation as the large C+-+
project takes a long time to compile.

3.1 Functional Requirements

FR1 The system should support swapping storage engines within RocksDB, allowing
users to select between at least POSIX and io_uring. A configuration option should
be available to specify the desired storage engine (e.g., storage engine=POSIX).

FR2 Users should be allowed to perform benchmarks with different storage engines using
RocksDB’s db_bench tool with the new backends.

FR3 The backends should support all relavant storage APIs including io uring posix and
libaio.

FR4 The System benchmarks should be run on an emulated NVMe SSD for repeatable
experiments.

FRS5 The System should support instrumentation possibilities to allow users to dynami-
cally instrument right before every write to disk and after every write to disk.

3.2 Design Overview

The design we implemented is shown in Figure|[2l RocksDB’s plugin system allows the reg-
istration of different file systems, enabling users to select custom file systems as RocksDB
parameters. In our case, we register a file system called Engineswap @, which acts as a
pass-through layer. Engineswap forwards 1/O calls to specific custom backends such as
libaio @, posix @ and io_uring @ (FR3) based on a parameter given to db_bench,
the RocksDB internal benchmark. The backend used is determined based on a RocksDB
configuration parameter or an environment variable.

3.3 Design Motivation

We chose this architecture because similar approaches, such as ZenF'S [12] and DedupF'S [13],
have demonstrated success in using the plugin system for RocksDB, additionally, the plu-
gin system provides the ability to select different storage backends FR1. It also supports
db_bench out of the box (FR2).

Alternative designs, such as hijacking library calls, introduce potential instability and
complexity, making debugging more challenging. Our design avoids these pitfalls and
aligns directly with the requirements (FR1, FR3, and FR4). By building upon existing
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Figure 2: Design overview

plugin infrastructure, the architecture remains extensible for future experimentation with
additional storage backends.

For user-level dynamic tracing on linux, USDT-probes are the only option supported
by common tools like bpftrace that would satisfy FR5. The location of the probes was
chosen to avoid mistakes in the experimentation phase of the project.

4 Implementation

In this section, we implement the engineswap plugin into a system. The implementation
of the engineswap is explained in 4.1 and the implementation of the system around it is

explained in [4.2]

4.1 The engineswap plugin

The engineswap plugin has taken great inspiration from zenfs [12] and dedupfs [13]. We
built a pass through file system which can be enabled using the db_bench fs uri pa-
rameter followed by :// and the desired backend. Because RocksDB is designed with
synchronous 10, we used the implementation of the RocksDB posix file system as a base-
class, and overrode some methods to replace the calls with io _uring. In addition, we used
user-level probes (USDT probes) [14] per backend per read and write call, one before and
one after calls.

For io _uring we used liburing |?|, a library which provides a lot of helper functionality
assisting with the development of io uring applications. Additionally, we made rings
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thread local, so the setup of the rings (and the creation of the kernel threads) would
happen only a few times. We ensured the creation of the rings happens less than 20 times
using print statements. For the submission queue polling, we configured the kernel thread
to go to sleep after 5 seconds without incoming SQEs.

4.2 The System

Asio_uring is only available on Linux, our back-ends will not work on any other operating
system or storage stack unless they implement io uring and libaio as well. We got an
ubuntu 22.04 VM, running the 6.8.0 kernel provided by ubuntu.

The VM is running on 10 cores and 81 GB of memory of which we used 2 cores and 50
GB of memory for the virtual ssd. The host is running an Intel Xeon Silver 4416+ CPU.

We chose NVMeVirt for our virtual SSD, we use nvmevirt [15], it is more representative
of real workloads over the alternative tmpfs as it has a real file system and configuration
options to simulate other SSD speeds.
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KF | Section | Experiment question Workload

KF1|| 5.1 Is there a performance difference between engines? | real-world emulating
KF2|| 5.2 How does io uring use CPU compared to posix? Simple with WAL
KF3| | .3 Why is io _uring slower than posix? simple without WAL

Table 1: Experiment overview

5 Experiments

In this chapter we find performance differences between io uring and posix by experiments
summarised in table |1, From these experiments, we conclude the following key findings:

KF1

KF2

KF3

5.1

Io uring throughput and latency are worse than posix and libaio, and
deteriorate even further when submission queue polling is enabled (Sec-
tion [5.1)). We ran a real world emulating workload and measured get() and put()
latency. We compared storage engines between posix, io_uring, io_ uring with sub-
mission queue polling and libaio. We found throughput and latency to be similar
between libaio and posix, where throughput is increasingly worse for io uring and
io_uring with submission queue polling.

The time lost by Io uring is mostly off-cpu time, and very little on cpu
time. (Section [5.2). We run a much simpler workload consisting of SStable writes
and WAL writes on posix and io_uring engines. We made a CPU profile and
visualised these in flame graphs. We found very similar profiles between io uring
and posix, and concluded the latency and throughput difference not to be on the
CPU.

When doing single-threaded I/O io_uring introduces some overhead with
synchronisation, and a large increase in file system latency. (Section .
We run a fully single-threaded workload without WAL writes and measure the la-
tency of code path components for io uring and posix. We plot these in a stack
plot which shows the io_uring worker application thread synchronisation over-
heads to be around 60 microseconds on average both ways. Additionally, we find
an unexpected file system latency increase in io_uring compared to posix.

Experiment 1, A simple benchmark

In our first experiment, we wanted to answer is there a difference in performance between
our i0_uring, libaio, and posiz storage configurations?.

5.1.1 Method

We ran a workload with similar characteristics provided by Cao et al. [16]. And measured
(among other metrics) throughput and P99 latency of get() and put() calls. We chose
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these metrics as Dean and Barroso noted in [I7] that p99 outliers disproportionately
affect overall system performance, often causing bottlenecks that degrade responsiveness
for latency-sensitive applications.

5.1.2 Workload

[16] Found that key size in real-world workloads are typically small, with sizes ranging
from 16 to 32 bytes, while the values vary from hundreds of bytes to a few kilobytes.
Following these findings, the experiments in this project use key sizes of 16 bytes and 32
bytes, paired with values of 128 bytes, 512 bytes, and 1,024 bytes. These choices reflect
a common distribution seen in many production systems, including metadata storage
and log processing applications. By including these values, the benchmark tests both
small and moderate value sizes, ensuring a comprehensive evaluation of storage engine
performance across diverse workloads. Our parameters are defined in table [2|

Table 2: Workload 1: Customized MixGraph Workload

Parameter Value Details
Key Size 48 bytes Fixed
Value Size Distribution Log-normal Mean: 268 bytes, StdDev: 25.45 KB
Key Distribution Zipfian-like Parameters: a = 0.002312, b = 0.3467
Key Range Distribution Custom Parameters: a = 14.18, b = —2.917,
c=0.0164, d = —0.08082
Number of Key Ranges 30 Fixed
Operation Ratios 83% Get, 14% Put, 3% Seek Mixed operations
[/O Settings Direct 1/0 Reads, flush, compaction
Cache Size 256 MB Fixed
Throughput of Different Engine Types (ops/¢ get & put P99 latency for different engines

—~ 60000 ~ i Operation

o] 2 60 4 I get

§ 50000 A § = put

S 40000 o

5 S 40 A

230000 A £
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Figure 3: Throughput

Page 12



Engineswap: RocksDB with io uring and its performance

5.1.3 Results of the simple benchmark

When examining the throughput performance of the four backends—POSIX, libaio, io_uring,
and io_uring with polling—it is evident that the POSIX backend consistently outper-
formed the others, achieving the highest throughput of 65,467 and 118.6 MB /s operations
per second (OPS). This performance was slightly better than libaio, which reached 62,590
OPS and 113.3 MB/s, showcasing its efficiency in handling synchronous I/O operations.

On the other hand, the io uring backend, while leveraging modern asynchronous 1/0
mechanisms, achieved a significantly lower throughput of 44,013 OPS and 79.6 MB/s.
Despite its design to reduce syscall overhead, io uring lagged behind both POSIX and
libaio, possibly due to being better optimized for single-threaded workloads.

The io uring with polling backend demonstrated the lowest throughput among the
four, achieving only 30,748 OPS and 55.7 MB/s. Although the addition of polling was
intended to improve performance by minimizing latency, it seems to have introduced
overheads that negatively impacted throughput in this single-threaded configuration.

To summarise, we used a workload emulating real world traces from [16] and measured
get() and put() latencies between io uring and posix. We conclude in Key finding 1:
io uring throughput and latency are worse than posix and libaio, and deteriorate even
further when submission queue polling is enabled.

5.2 Experiment 2, CPU profile

In the benchmark experiment, we concluded that io uring and libaio were both slower
than posix. In this and the following experiments, we zoom in on the question: How s
io_uring CPU wusage distributed over components compared to posiz? . To do this, we
want a full picture of time spent during the database, so we chose a profiling technique,
using perf.

5.2.1 Method

We configured perf to capture stack samples from our process’ main thread at 1000hz
while running our workload. If our main thread was not on cpu, perf discards the sample.
We can then count per function the stacksamples associated with this function, and find
which functions took a lot of CPU time.

We recompiled lib__uring from the source with the -fno-omit-framepointer flag to allow
perf to unwind stacks properly. Additionally, we rebuild the file system on the virtual
SSD between invocations of db_bench run to avoid fragmentation.

5.2.2 Workload

To speed up the experiment turnaround time, we made a much simpler workload which
is easier to analyse. In the evaluation, we ensured that the same behaviour still exists in
this workload. The workload itself consists of randomly putting 50.000.000 pairs into the
database, without compactions, but we kept the write ahead log (WAL). This workload
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is almost fully single-threaded which makes its performance much easier to analyse. It
also sped up experiment runtime from 8 hours to 4 minutes.

[ES

T

—
0= -
Ii!l!f‘

||| | -
|

|
|

|

(a) io_uring (b) posix

Figure 4: Comparison of flame graphs for io _uring and posix

5.2.3 Results

We plot our results in a flame graph in figures [fa] for io_ uring and [4b] for posix. Functions
are represented by horizontal bars, of which the width represents the size spent in this
function. The order of different towers do not matter. The height on the stack represents
function call graph depth.

The function names are omitted, but we annotate some sections of interest. The teal
(left) tower are the WAL writes which is our area of interest as these happen with different
storage engines. The green blob in the middle represent the memtable insertions, which
do not use 10. On the right, the memtable flushes are marked in blue.

When analysing the different tower widths, we found a striking similarity between
the two graphs, indicating the on-CPU time is similarly distributed between the engines.
Moreover, from the stack samples captured for io uring, 26.82% are appending the WAL
file whereas for posix this is 22.32%, which is not as large a difference as we saw in the
previous experiment as we would see the WAL io_uring tower to be close to 1.5 times
wider than posix rather than a few per cent.

So because the time is distributed similarly between io_uring and posix we conclude
the following in Key finding 2: The time lost by i0_uring is mostly off-CPU time, and
very little on CPU time.

5.3 Experiment 3, Latency analysis

In the previous experiment, we found that the extra logic employed by io uring to offload
to the worker takes a lot of CPU time, where we hypothesised that this could be the
cause of the slowdown in io_uring compared to posix. However, the previous experiment
only measured time running on the CPU, and not actual time spent between operations.
Additionally, it did not measure time synchronising the worker and application thread
and its effect on latency. In this experiment, we try to overcome these shortcomings by
asking: Where is the actual time spent in io_uring and Posiz?.
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5.3.1 Method

To find the answer, we used a latency analysis technique leveraging bpftrace and our
USDT probes from chapter |3l To Find the code path taken by the io uring and posix
syscalls, we used trace-cmd [I8] and its function graph tracer to list the functions called.
Based on this graph, we created a bpftrace script which measured the time spent in a
few sections by instrumenting different probes and calculating the time in nanoseconds
between their hits. For posix, we identified the following sections:

1.

Time to go from user to kernel space. This is measured as the difference in
nanoseconds between our USDT probe before the syscall and a kprobe (instrumen-
tation that triggers on kernel function enter) attached to vfs_write().

Time for write preparation, involves verifying the permissions of the files, resolv-
ing the file descriptor with the file structure, etc. This is measured with a kprobe
attached to ext4d write iter, and the previous event.

File system latency, which involves the time required for the file system to write to
the file. This is measured with a kretprobe (instrumentation that triggers on kernel
function exit), attached again to ext4 file write iter and xfs file write iter and
the previous event.

Time to go from kernel space to user space, we measure again with a USDT
probe, this time after our syscall and the previous event.

For io uring, we measured the extra io uring logic as well as the old logic. We
instrument io_uring as follows:

1.

Time to go from user to kernel space. This is the same as in posix, but this
time we instrument a kprobe attached to fdget() and the USDT probe from |3 before
the preparation and submission of the SQE.

SQE processing, which involves verifying the permissions of the files, processing
some flags, resolving file descriptors, etc. This is measured with a kretprobe attached
to io_submit sqes and the previous event.

. Io worker synchronisation, Remember that io uring uses worker threads to do

the hard work (section [2.2.3)) and there is the time required for the kernel worker to
wake up or realise it has work to do. We measure this time with a krprobe attached
to io__worker handle work and the previous event.

. Write preparation This is similar to the posix preparation. This is again measured

by a kprobe attached to ext4 write iter and the previous event.

File system latency, this is the same as in posix. This is again measured with a
kretprobe (instrumentation that triggers on kernel function exit), attached again to
extd file write iter and xfs file write iter and the previous event.
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File write latency breakdown posix vs io_uring
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Figure 5: Summary of latency analysis. (Lower is better)

6. SQE cleanup. This is the time needed to create and submit the CQE. It is mea-
sured with a kretprobe attached to kioch done and the previous event.

7. Application thread synchronisation, is the time spent between submitting the
CQE and the application thread realising the CQE has been submitted. We measure
this kprobe attached to finish wait and the previous event.

8. Time to go from kernel space to user space, we measure again with a USDT
probe after our syscall and the previous event.

We verified that all of the instrumentation is always passed in order for both posix and
io_uring. Additionally, we verified that the creation of the kernel worker thread occurs
a very small amount of times (10 times for 50 million writes). We also rebuild the file
system between every invocation of db_bench.

5.3.2 Workload

We use almost the same workload as in section [5.2| consisting of filling the database
with 50.000.000 pairs without compactions. We did disable the WAL writes to make the
workload fully singlethreaded, making our tracing instrumentation more reliable.

5.3.3 Results

We plot our results in figure 5] where the vertical axis represents the average time spent
in within a write call in nanoseconds, where the differently colored areas represent time
in our defined sections of the code path. We captured 6098 samples per engine. The
entire call for posix takes on average 223278 nanoseconds where io uring takes 450546
nanoseconds. The totals are measured with a separate calculation to cross-reference the
stack plot. We also looked at [19] where the auhors found file system latencies on hundreds
of microseconds.
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When analysing the plot, we notice the time spent synchronising between the io uring
worker and the application thread is significant. The time between the application submit-
ting the request and the worker realising it has work to do, is on average 29 microseconds,
where the reverse transaction is on average 32 microseconds.

Addressing the elephant in the plot is the large difference in file system latency, where
io_uring spent on average 355 microseconds, and posix 209 microseconds. This is quite
odd as the file system is a shared component between io _uring and posix. We tested both
ext4 and xfs, obtaining similar results. We still suspect a performance or configuration
bug to be the cause. To properly assess the cause behind our result, future work is needed.

To summarise, we used latency analysis with bpftrace to find latencies associated with
different components. We conclude in Key finding 3: When doing single-threaded 1/0
10_uring introduces some overhead with synchronisation, and a large increase in file sys-
tem latency.
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6 Conclusion

RocksDB is an important piece of computing infrastructure deployed in many other
projects where performance is important. We investigate if RocksDB can benefit when
changing its engine to io_uring or other asynchronous APIs, even though it is designed
for synchronous 10. To do this, we designed, implemented, and evaluated engineswap,
a RocksDB plugin able to pass calls through the file system to different APIs including
posix, io__uring and libaio. We find posix and libaio to have better throughput and latency
compared to io_uring and in both real-world emulating, and simple synthetic workloads.
However, we have reasons to believe performance bugs exist in our system and more work
is needed to find why io uring performs worse.

6.1 Limitations

Some limitations are enumerated below. At the time of writing, we really wants to
continue with other projects and courses and avoid feature creep, causing us to cut quite
importand features from the project.

No off-CPU flame graph

To accompany our CPU profile in section an Off cpu flame graph would show much
more insight into the difference between io uring and posix performance. This would
crosreference our latency analysis in as well. Unfortunately oft-CPU flame graphs
are usually constructed using offcputime [20] which uses a kprobe attached to a function
which got inlined in all the kernels we had access to. Where a recompilation of our own
kernel did not fit on the VM provided and increasing the size of the virtual disk was
deemed very risky and a little rude to our supervisors.

No crossreference for the file system latency increase in section

In we found a large increase in file system latency between io uring and posix.
The increase in file system latency is rather alarming and signalling a performance bug
that could jeopardise all our results so far. A crossreference to this result would be quite
useful.

No error bars in the experiment from section [5.1

The experiment from uses a real-world emulating workload to find the difference
between io uring and posix. Even though the experiment takes 8 hours to complete
and gave a very large number of samples, we received advice that db_bench performance
can vary between runs. Running the same experiment some more times should assist in
solving this issue.
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6.2 Suggestions for Future Research

Future research could figure out why file system latency is so much worse in io_uring
compared to posix. To do this, it could attempt latency analysis on the file system to
find where the latency exactly is coming from. It also could attempt to use bpftrace and
trace-cmd to compare file system code path or use bpftrace to compare arguments fed
to ext4d file write iter between the two engines. This research could lead to finding a
performance bug in liburing or the Linux kernel.

Page 19



Engineswap: RocksDB with io uring and its performance

7 References

[1] M. Platforms, “Rocksdb,” accessed: 2024-11-28. [Online|. Available: https:
/ /github.com /facebook /rocksdb

[2] Y. Matsunobu, S. Dong, and H. Lee, “Myrocks: Lsm-tree database storage engine
serving facebook’s social graph,” Proc. VLDB Endow., vol. 13, no. 12, p. 3217-3230,
Aug. 2020. [Online|. Available: https://doi.org/10.14778/3415478.3415546

[3] P. LLC, “Percona server for mongodb 6.0.” [Online]. Available:  https:
/ /docs.percona.com /percona-distribution-for-mongodb /

[4] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,
K. Niemi, A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade, B. Darnell,
B. Gruneir, J. Jaffray, L. Zhang, and P. Mattis, “Cockroachdb: The resilient geo-
distributed sql database,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1493-1509. [Online]. Available:
https://doi.org/10.1145/3318464.3386134

[5] H. van der Breggen, “Mysql customer: Booking.com.” [Online|]. Available:
https:/ /www.mysql.com/customers/view /71d=901

[6] D. Pacheco, “110 - cockroachdb for the control plane database / rfd / oxide,” Aug.
2024. [Online|. Available: https://rfd.shared.oxide.computer/rfd /0110

[7] Z. Ren and A. Trivedi, “Performance characterization of modern storage stacks:
Posix i/o, libaio, spdk, and io uring,” in Proceedings of the 3rd Workshop on
Challenges and Opportunities of Efficient and Performant Storage Systems, ser.
CHEOPS '23. New York, NY, USA: Association for Computing Machinery, 2023,
p. 35-45. [Online|. Available: https://doi.org/10.1145/3578353.3589545

[8] F. Engineering, “Rocksdb: A persistent key-value store for flash and ram storage,”
Facebook Open Source Blog, 2013, available at https://github.com /facebook /rocksdb.

[9] H. Kim and S. Lee, “Comparative analysis of modern storage engines: io_uring vs
libaio,” ACM Transactions on Storage, vol. 19, no. 2, pp. 1-18, 2023.

[10] H. Tao and Z. Yu, “Performance evaluation of linux asynchronousi/o,” in 2008 Inter-
national Conference on Computer Science and Software Engineering. 1EEE, 2008,
pp- 100-105.

[11] A. Tosup, L. Versluis, A. Trivedi, E. van Eyk, L. Toader, V. van Beek, G. Frascaria,
A. Musaafir, and S. Talluri, “The atlarge vision on the design of distributed sys-
tems and ecosystems,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), 2019, pp. 1765-1776.

Page 20


https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://doi.org/10.14778/3415478.3415546
https://docs.percona.com/percona-distribution-for-mongodb/
https://docs.percona.com/percona-distribution-for-mongodb/
https://doi.org/10.1145/3318464.3386134
https://www.mysql.com/customers/view/?id=901
https://rfd.shared.oxide.computer/rfd/0110
https://doi.org/10.1145/3578353.3589545
https://github.com/facebook/rocksdb

Engineswap: RocksDB with io uring and its performance

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

“Zenfs: A file system for rocksdb on zoned block devices,” accessed: 2024-11-28.
[Online|. Available: https://github.com/westerndigitalcorporation /zenfs

“Dedupfilesystem,” accessed: 2024-12-18. [Online|. Available: https://github.com/
ajkr/dedupfs

B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic instrumentation
of production systems,” Useniz Annual Tech Conference, vol. 4. [Online|. Avail-
able: https://www.usenix.org/conference/2004-usenix-annual-technical-conference/
dynamic-instrumentation-production-systems

S.-H. Kim, J. Shim, E. Lee, S. Jeong, I. Kang, and J.-S. Kim, “NVMeVirt: A
versatile software-defined virtual NVMe device,” in 21st USENIX Conference on
File and Storage Technologies (FAST 23). Santa Clara, CA: USENIX Association,
Feb. 2023, pp. 379-394. [Online|. Available: https://www.usenix.org/conference/
fast23 /presentation /kim-sang-hoon

Z. Cao, Y. Yu, Y. Qiu, Y. Hu, P. Lian, and G. Hu, “Tbe: A tensor-based
key-value cache design on persistent memory,” in 18th USENIX Conference on
File and Storage Technologies (FAST), 2020, pp. 133-147. [Online|. Available:
https://www.usenix.org/system/files/fast20-cao zhichao.pdf

J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56,
no. 2, pp. 74-80, 2013.

S. Rostedt, “rostedt/trace-cmd,” Dec. 2024. [Online|. Available: https://github.com/
rostedt /trace-cmd

H. Duan, L. Shi, Q. Zhuge, E. H.-M. Sha, C. Li, and Y. Liang, “An empirical study
of nvm-based file system,” in 2021 IEEE 10th Non-Volatile Memory Systems and
Applications Symposium (NVMSA), 2021, pp. 1-6.

B. Gregg, “offcputime-bpfcc(8) — bpfec-tools — debian unstable — debian
manpages.” [Online|. Available: https://manpages.debian.org/unstable/bpfce-tools/
offcputime-bpfcc.8.en.html

Page 21


https://github.com/westerndigitalcorporation/zenfs
https://github.com/ajkr/dedupfs
https://github.com/ajkr/dedupfs
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/dynamic-instrumentation-production-systems
https://www.usenix.org/conference/2004-usenix-annual-technical-conference/dynamic-instrumentation-production-systems
https://www.usenix.org/conference/fast23/presentation/kim-sang-hoon
https://www.usenix.org/conference/fast23/presentation/kim-sang-hoon
https://www.usenix.org/system/files/fast20-cao_zhichao.pdf
https://github.com/rostedt/trace-cmd
https://github.com/rostedt/trace-cmd
https://manpages.debian.org/unstable/bpfcc-tools/offcputime-bpfcc.8.en.html
https://manpages.debian.org/unstable/bpfcc-tools/offcputime-bpfcc.8.en.html

Engineswap: RocksDB with io uring and its performance

A db_bench parameters

Keyfinding 1, the benchmark

./db_bench --benchmarks=mixgraph,stats,levelstats
--fs_uri=engineswap://$ENGINE --compression_type=none -histogram
--db=/local/nvmevirt

--use_existing_db=1

--cache_size=268435456

--key_dist_a=0.002312 -key_dist_b=0.3467
--keyrange_dist_a=14.18

--keyrange_dist_b=-2.917

--keyrange_dist_c=0.0164
--keyrange_dist_d=-0.08082

--keyrange_num=30

--value_k=0.2615

--value_sigma=25.45

--iter_k=2.517

--iter_sigma=14.236

--mix_get_ratio=0.83

--mix_put_ratio=0.14

--mix_seek_ratio=0.03
--sine_mix_rate_interval_milliseconds=5000
--sine_a=1000

--sine_b=0.000073

--sine_d=4500

--perf_level=2

--reads=420000000

--num=50000000

--key_size=48

--statistics=1

--stats_interval_seconds=1
--report_interval_seconds=60
--report_file=/home/user/simple-bench-out-$ENGINE.csv

A.0.1 Keyfinding 2, flamegraphs

$ROCKSDB_PATH/db_bench --benchmarks=fillrandom
--fs_uri=engineswap://$ENGINE
--db=/local/nvmevirt/

--compression_type=none -histogram
--disable_auto_compactions
--max_background_compactions=0

-cache_size=0

--num=50000000
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A.0.2 Keyfinding 3, latency analysis

$ROCKSDB_PATH/db_bench --benchmarks=fillrandom
--fs_uri=engineswap://$ENGINE
--db=/local/nvmevirt/
--compression_type=none -histogram
--disable_auto_compactions
--max_background_compactions=0
-cache_size=0
--num=50000000
--disable_wal=1

B Full flamegraphs

B.1 io uring

Flame Graph

rocksdb:: WriteBatchInternal::InsertInto

Figure 6: Full flamegraph for io_uring
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Flame Graph
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B.2 posix

riteBatchInternal::InsertInto

Figure 7: Full lamegraph for posix
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