
A survey on flash storage disaggregation: performance and quality of service
considerations

Sudarsan Sivakumar
Vrije Universiteit, Amsterdam

s.sivakumar@student.vu.nl

Abstract

Disaggregated flash storage architectures have become in-
creasingly important in cloud environments to enable flexible
resource allocation. However, the performance of these dis-
aggregated setups is hindered by the overhead introduced by
the software stack. Additionally, ensuring consistent and reli-
able end-to-end quality of service (QoS) is challenging due
to the inclusion of multiple resources (compute, network and
storage) and the dynamic shifting of performance bottlenecks.
This survey examines the mechanisms proposed to address
these challenges in disaggregated flash storage environments.

1 Introduction

Designing server machines with the right balance of CPU,
memory, and flash storage is difficult for cloud providers as
well, because each application has unique and often dynami-
cally varying requirements for each resource [2, 19]. To ac-
commodate the difference in computing and storage capacity
utilization, cloud providers are utilizing disaggregated stor-
age setups. The disaggregated approach decouples storage
and compute resources, this enables fine-grained and flexi-
ble allocation of storage resources as per user requirements.
This reduces the total cost of ownership by avoiding the over-
provisioning of resources.

Disk-based disaggregated storage architectures have been a
common setup in cloud for a long time [8]. However, the intro-
duction of flash storage has brought the disaggregated storage
approach back into the spotlight. Flash storage has revolution-
ized the storage landscape by delivering the performance of
up to one million IOPS with microsecond latencies [6, 10].
Flash storage has provided even more reasons to maintain a
disaggregated storage architecture. The expensive flash con-
trollers used in these devices encourage manufacturers to
pack more capacity into a single flash module [2], driving the
need for disaggregation. Additionally, the under-utilization of
available IOPS by many applications can be more effectively
addressed through the flexible resource allocation enabled by

disaggregated storage [5, 22].
However, the high performance of flash storage has exposed

the performance bottlenecks with the existing disaggregated
storage software stack [19], which was unable to keep up with
the capabilities of these new flash devices. The performance of
Flash has made other resources in the disaggregation storage
stack susceptible to becoming bottlenecks, affecting the end-
to-end quality of service (QoS) experienced by applications.

To ensure consistent end-to-end QoS for disaggregated stor-
age environments, it is necessary to regulate all the resources
involved, including compute, and network. This highlights
the requirement for a unified approach for QoS enforcement
across the components of the disaggregated flash storage in-
frastructure.

The need for performance and reliable QoS in flash storage
disaggregation has motivated a significant amount of research
in this direction. To our knowledge, no survey has been pub-
lished for this topic. This motivates us to compile this survey.
The survey is organized as follows: In Section 3, we provide
the background on the storage disaggregation software stack.
Section 4 discusses performance optimization in different
layers of the disaggregation software stack. Section 5 dis-
cusses the ensuing unified quality of service in flash storage
disaggregation.

2 Study design

In this section, we define the goal of the survey and present
the research questions. We also define the scope of the work
and the methodology used to find research papers.

2.1 Research goal

The goal of this survey is to look into research done concern-
ing performance and end-to-end unified quality of service in
flash storage disaggregation as specified in the introduction.
So, we will be answering the following research questions.



Figure 1: Storage disaggregation architecture with tracing the flow of request across the stack.

RQ1 What are the different mechanisms and their trade-
offs for improving the performance of disaggregated
flash?

RQ2 What are the challenges and different mechanisms
to provide a unified network and storage QoS guarantee?

2.2 Scope
To limit the scope of this survey we considered the following
exclusion criteria:

E1 Flash storage disaggregation in context of HPC.

E2 Application specific storage disaggregation.

E3 Disaggregated storage interface other than block or
filesystem. We also exclude disaggregated filesystem
like HDFS [26], that provides fault tolerance.

E4 QoS enforcement only at the end host.

2.3 Methodology
We use several methods to find papers to include in the survey.
We first start with several seed papers and use the Snowball
methodology to find related papers by looking at references
in both directions. We also look at several conferences that
include storage-related topics and look for papers that satisfy
the inclusion criteria. The conferences considered are FAST,
Hot-Storage, USENIX ATC, SYSTOR, NSDI, and EuroSys.
We look through all conferences from 2010 to 2023 and look
for relevant papers. Finally, we do a manual search using
several relevant keywords.

3 Background

This section provides the necessary background before answer
the research questions in this survey. Section 3.1 specifies the
general architecture of the storage disaggregation. Section

3.2 provides the overview on exclusive processing per cores
architecture for performance.

3.1 Storage disaggregation stack

Fig 1 depicts a schematic representation of a disaggregated
storage architecture. This architecture consists of two main
components: the initiator and the target. On the initiator side,
we have the applications that generate the storage requests.
Let’s track remote block request propagation from applica-
tion to the remote flash device. The application submits the
request to the block layer in the initiator (Depicted as "Stor-
age processing" in Fig 1), which then processes the request
and submits it to the driver corresponding to the target block
device (Depicted as "Remote interface").

Since the storage device is located remotely, the request is
encapsulated in a packet and sent over the network to the tar-
get. On the target side, the server receives the network packet
containing the request. The server does processing and then
submits the request to its local block layer, which in turn for-
wards the request to the storage device, in this case, the flash
device. Similar propagation of request across components
holds for disaggregated flash storage with filesystem interface
as well.

3.2 Processing pipeline per core

Since the advent of fast I/O devices, the compute has be-
come the bottleneck in many storage systems. The traditional
single-processing pipeline based designs often suffer from
performance issues due to contention.

To address this challenge, the design of processing
pipelines per core has been explored. This approach is also
applicable to disaggregated flash storage, where separate pro-
cessing pipelines are available for each core on the initiator
by default, as shown in Fig 2.

In this disaggregated storage architecture, each I/O flow is
processed separately in the core from which it originated. The

2



Figure 2: Dedicated storage processing pipeline for each core.
In this case the processing pipeline refers to the storage and
network processing of I/O.

processing of an I/O flow includes both storage processing
and network processing for the disaggregated storage system.

By having dedicated processing pipelines for each I/O flow,
the contention and performance issues associated with a single
processing pipeline can be mitigated. This design approach
allows for more efficient utilization of the available compute
resources, leading to improved performance in disaggregated
flash storage systems.

4 Performance in flash storage disaggregation

In this section, we will be answering the RQ1 by looking into
different performance optimization and the trade-off. In this
context, performance refers to the latency and throughput of
I/O operations. For better classification of mechanisms, we
further abstract the components presented in Fig 1 into three
components: Storage and network interface in the initiator
(marked as A), Network (marked as B) and Storage and
network interface in the target (marked as C).

4.1 Network

Transport protocol Papers

TCP i10 [17], Alibaba [23], LT-
NoT [13], ReFlex [20]

RDMA SPANoF [30], Pangu [11,
22]

Table 1: Transport protocols in the selected papers

Based on the survey, we discovered that there has been a
focus on optimizing the transport protocol for the network
component of the disaggregation stack. The transport protocol
is expected to provide high performance and be scalable in the

number of connections. Scalability is necessary because of
dedicated processing pipeline for each core as we saw earlier.

TCP and RDMA are popular transport layer protocols for
flash storage disaggregation. TCP can accommodate a large
number of connections, but its compute overhead causes per-
formance concerns, even with segmentation offloading, jumbo
frames, and interrupt affinity. RDMA, on the other hand, deliv-
ers excellent performance by eliminating interrupt processing,
context switching, and copying. However, RDMA’s scalability
concerns emerge from the number of connections it can sup-
port. This problem arises from the limited onboard memory in
RNICs [30]. SpanoF [30] and Pangu [11, 22] do multiplexing
of multiple storage I/O flows to network connections to ad-
dress the scalability of RDMA. SpanoF and Pangu multiplex
several storage I/O flows to network connections to improve
RDMA scalability.

Table 1 specifies the papers considered for this literature
survey and the transport protocol they use. All the papers that
were specified under RDMA used the multiplexing optimiza-
tion for scalability.

4.2 Storage and network interface in the
initiator

In this section, we explore performance optimization tech-
niques proposed in the literature, focusing on the storage and
network interface at the initiator side. The key methods ex-
amined are batching of I/O request and hardware offloading
implementations.

4.2.1 Batching of I/O request

To overcome the network processing cost, multiple I/Os are
batched into a single packet to increase the overall throughput.
However, this batching approach can also increase the latency
of individual I/O operations, creating a trade-off between
throughput and latency. This trade-off can be more easily
negotiated if the I/O characteristics (throughput or latency
sensitive) are known, allowing the cloud provider to perform
the required optimization.

However, the processing pipeline per core attribute makes
it difficult to apply characteristic-specific optimizations. For
example, if latency-sensitive and throughput-sensitive appli-
cations are running on the same core, the requests will be
mixed, leading to sub-optimal performance for both types of
flows. The gathered literature has explored various techniques
to address this challenge. The techniques form a trade-off
with performance vs compute utilization.

• Flushing on latency-sensitive requests: One approach
is to flush the batched requests when a latency-sensitive
request is encountered. However, this can have a nega-
tive effect on overall performance. I.e, While flushing
the batched requests on encountering a latency-sensitive

3



Figure 3: Dedicated processing pipelines for throughput and
latency bound requests.

request may help improve the latency for that specific re-
quest, it can reduce overall system throughput by disrupt-
ing the batching mechanism. This technique trade-off
performance for lower compute utilization.

• Dedicated processing pipeline: Another approach, as
shown in Fig 3, involves building a special processing
pipeline for requests that are performance and latency-
sensitive. In this case, scheduling becomes challenging,
as the system needs to provide high priority to threads
handling pipelines of latency-bound requests while si-
multaneously ensuring that the throughput-bound re-
quests do not starve. Implementation of this technique
provides a choice of either lower compute utilization or
performance by either scheduling pipeline threads in a
round-robin manner, which trades off performance, or
by scheduling them concurrently to achieve high perfor-
mance.

• Request steering: Another approach, is to steer requests
between cores. I/O processing on each cores can be
specified to optimize for either latency or throughput.
This technique utilizes more compute to improve perfor-
mance. However, this approach can lead to slowness
due to issues like data cache misses and congestion
when accessing queues on separate cores, often favoring
throughput-oriented requests over latency-sensitive ones.
Frequent request steering may also impact the overall
performance.

• Application steering: To address request steering chal-
lenges, the I/O layer can provide feedback to the sched-
uler based on a certain policy, allowing the application
thread in charge of a particular flow to be shifted to a dif-
ferent core, effectively separating the competing flows.

This technique utilizes more compute to improve perfor-
mance.

By leveraging these techniques, a balance between through-
put and latency performance of disaggregated storage can
be achieved. Table 2 specifies the papers and the balancing
technique they use.

Batching technique Papers
Flushing i10 [17]
Dedicated pipeline i10 [17]

Request steering
Hwang et al. [18], LT-
NoT [13], Gu et al.
[14]

Application steering Hwang et al. [18]

Table 2: Batching techniques in the selected papers.

4.2.2 Hardware offloading of storage virtualization
services

Storage virtualization in cloud

Apart from providing raw storage, cloud providers often
execute additional functions on the stored data, such as com-
pression, erasure coding, and other storage-related operations,
depending on the requirements. To avoid such complexities,
the cloud providers abstract the storage resources. The hy-
pervisor plays a crucial role in this virtualization process,
providing the necessary abstraction and management capabili-
ties to the cloud provider as depicted in Fig 4. The hypervisor
abstracts the disaggregated storage and storage functions from
the user application (e.g., a virtual machine in the case of Fig
4) and presents them as a block device.

Figure 4: Hypervisor based block storage virtualization in
cloud. SV represents storage virtualization components.

This virtualization layer allows the cloud provider to
manage the underlying storage infrastructure and associated

4



services transparently, while the user application interacts
with the storage as if it were a local block device. This
also enables the cloud provider to optimize and modify
the storage resources and services based on the workload
requirements, without the user application being aware of the
underlying complexities. Cloud providers frequently modify
the control logic [31]. One such example is the change of
primary storage node in case of replication.

Hardware offloading
The demand for bare metal services, the presence of lim-
ited compute availability, and the need for cloud service se-
curity and isolation drive cloud providers to seek hardware
offloading (represented in Fig 5) of the virtualized service.
The offloading should provide good performance as storage
functions(compression, erasure coding, etc) are also executed.
Apart from the performance requirements of hardware of-
floading, the mechanism must also be flexible enough to ac-
commodate upgrades to control logic, as specified earlier.

Figure 5: Offloading of storage virtualization. SV represents
storage virtualization.

Batching technique Papers

ARM DPU DPFS [12], LeapIO
[21]

Hybrid Alibaba [23],
SmartDS [31]

Table 3: Hardware offloading methodologies in the selected
papers.

The gathered literature has explored various mechanisms
to address the requirements for hardware offloading of virtu-
alized services, each with its trade-offs. The initial approach
was the usage of ARM-based DPUs (Data Processing Units),
which provide flexibility in control logic but suffer from re-
duced performance compared to hypervisor-based virtualiza-
tions due to the lower computational throughput of the ARM
cores. The next mechanism explored was offloading to FP-
GAs (Field-Programmable Gate Arrays), which can deliver
high performance but lack the flexibility of the ARM-based
DPUs and are also susceptible to bit flips and other integrity
issues [23]. To achieve a balance between high performance
and flexibility, cloud providers have adopted a hybrid strat-
egy, dividing the processing between the control plane and

the data plane. Control plane processing is handled on the
CPU, allowing for greater flexibility in control logic updates,
while data plane processing is offloaded to dedicated ASICs
(Application-Specific Integrated Circuits), providing the nec-
essary performance improvements. This hybrid approach en-
ables cloud providers to maximize the performance of the
virtualized services while maintaining the flexibility to adapt
the control logic as needed, addressing the trade-offs inherent
in the previous mechanisms.

Table 3 specifies the papers and the corresponding hard-
ware offloading mechanism they propose.

4.3 Storage and network interface in the target

In this section, we explore performance optimization tech-
niques proposed in the literature, focusing on the storage and
network interface at the target side. The key methods exam-
ined are the request processing model and CPU-free target
implementation. The request processing model investigates
different strategies for handling I/O requests at the target to
improve overall performance. Meanwhile, the CPU-free target
implementation explores alternate to CPU based processing
to enhance performance.

4.3.1 Request processing model in the target

The default request processing model of the target is called
processor-sharing. Where the processing of different requests
shares the compute as specified in Fig 6 (marked as A). The
processor-sharing model has a performance downside because
of interrupt handling, context switching, and cache pollution.

Figure 6: Target request processing model. (A) Processor
sharing model. (B) Run to complete model.

An alternative approach to the processor sharing model
is the run-to-completion (RTC) model. In the RTC model,
the processing of requests follows a first-come, first-served
(FCFS) basis, as depicted in Fig 6 (marked as B).

The key advantage of the RTC model is that it eliminates
the overhead associated with context switching, thereby re-
ducing the overall processing time. Additionally, this model
can enhance data cache performance by maintaining better
data locality.

5



However, the implementation of the RTC process model
for flash storage disaggregation targets can have implications
on the tail latencies. A larger I/O size request can poten-
tially cause head-of-line (HoL) blocking, where subsequent
requests are delayed due to the processing of the preceding
request.

To mitigate this issue, the approach taken is to make the
request to the flash device asynchronous. By handling the
flash requests asynchronously as proposed in ReFlex [20]
and Alibaba [23], the RTC model can be applied without the
risk of HoL blocking, ensuring that the tail latencies are not
adversely affected.

4.3.2 CPU free

The performance gains from Moore’s law and Denard scaling
have started to diminish, leading to a stagnation in CPU per-
formance [3, 7, 9]. As a result, applications that rely heavily
on CPU performance are facing bottleneck issues. To address
this challenge, research efforts have been focusing on explor-
ing alternatives to traditional CPUs [28]. Similarly, in the
context of flash storage disaggregation, there is a search for
CPU-free solutions to overcome the compute bottleneck. The
gathered literature presents two CPU-free approaches. The
desired solution is expected to not only provide high perfor-
mance but also be portable, allowing these optimizations to
be considered as an opportunity rather than a necessity.

CPU free design Papers
NIC-PCIe-Flash Flashnet [29]

NIC-Flash QuickSAN [4]
NVMeoF-FPGA [25]

Table 4: CPU free methodologies in the selected papers.

The first approach, proposed by Flashnet [29]. By design
Flashnet enables direct access to the storage device through
the RNIC (Remote Direct Memory Access Network Inter-
face Card). This is achieved by co-designing the RNIC, flash
controller, and file system stack, which streamlines the stor-
age access process. The advantage of this approach is its
portability. I.e, it can be used even without specalized RNICs.
Even the implementation in the paper is done in software
RDMA. However, this method has a limitation in terms of
performance gain due to the PCI (Peripheral Component In-
terconnect) bottleneck [31]. This approach can be classified
as NIC-PCIe-Flash.

The second approach involves embedding the NIC di-
rectly into the flash device, as specified in QuickSAN [4]
and NVMeoF-FPGA [25]. This approach provides high per-
formance, but it sacrifices portability as it requires specialized
hardware and the respective papers haven’t specified about it
as well. In this case, the solution is classified as NIC-Flash.

4.4 Summary

In this section, we reviewed the literature on different com-
ponents of the flash storage disaggregation stack, which have
explored various mechanisms and their associated trade-offs
for performance improvement. Table 5 provides an overview
of these mechanisms and their respective trade-offs, as gath-
ered from the literature.

5 Enforcing unified network and storage
quality of service

Quality of service (QoS) is a critical requirement for appli-
cations running in cloud environments [16]. Applications
running in cloud environments often require quality of ser-
vice (QoS) guarantees to ensure smooth performance output.
Service providers must enforce QoS for each application to
meet these requirements.

Flash storage disaggregation utilizes multiple resources,
such as compute, network, and storage. Performance vari-
ability caused by any one of these resources can affect the
end-to-end performance of the application. The improved per-
formance of storage media makes the end-to-end performance
more sensitive to the performance variability of network and
compute resources.

The QoS is typically enforced by schedulers that allocate
resources across applications fairly. In a storage disaggrega-
tion setup, each resource has its own schedulers, policies, and
workloads. For example, the process scheduler takes care of
the compute resource by implementing its scheduling poli-
cies across processes, separate from the disaggregated storage
processing. The interactions of these schedulers and policies
across different stages can lead to unexpected end-to-end QoS
experiences.

This motivates the need for unified QoS enforcement across
resources in flash storage disaggregation. In this survey, the
focus will be on the consideration of network resources in
QoS, as this is the area where the available literature provides
the most insights. This section will answer the RQ2 about
challenges and mechanisms to unified network and storage.

5.1 Challenge of semantic gap in unifying
network and storage

One of the main challenges in unifying the network and stor-
age schedulers for end-to-end QoS enforcement is the seman-
tic gap between the two components. As shown in Figure 7,
the network schedulers typically operate in terms of network
packets, while the storage schedulers work with I/O requests
and responses. This difference in the fundamental units of
operation creates a semantic gap that needs to be addressed.

From the papers gathered, the enforcement of QoS policies
happens at two different scales: per-packet or per-flow. In

6



Component Mechanism Trade-off Papers
Network Transport protocol Performance vs scalability 6

Storage and network interface at the
initiator

Batching techniques Performance vs compute 5
Hardware offloading Performance vs flexibility 4

Storage and network interface at the
target

Request processing model Performance vs tail latency 2
CPU free Performance vs portability 2

Table 5: Performance optimization techniques and their trade-offs in the components of a disaggregated flash storage architecture,
with the number of papers contributed for each mechanism.

Figure 7: Common semantics for network and storage.

the per-packet approach, the I/O request or response is ex-
pected to be encapsulated within a network packet, and the
flow is identified by the source and destination tuple. This per-
packet, as used by the RackBlox [24], mechanism provides
finer-grained control over QoS enforcement, as it allows for a
more direct mapping of I/O semantics to the network packet.
However, the per-packet approach requires deep packet in-
spection on the network switches, which can add complexity
and processing overhead.

In contrast, the per-flow based mechanisms, as employed
by systems like Pulsar [1], IOFlow [27] and Gupta et al. [15],
rely on identifying the flow based on higher-level information,
such as the source and destination addresses. While this per-
flow method is simpler to manage, it may miss some of the
granular I/O-level details that the per-packet approach can
capture.

By understanding the trade-offs between these approaches
and the underlying semantic gap, researchers and cloud
providers can develop more effective strategies for unifying
the network and storage schedulers to achieve end-to-end QoS
enforcement in flash storage disaggregation environments.

5.2 Mechanisms for unifying network and
storage

The mechanisms proposed in the gathered literature for uni-
fying the schedulers of the various components of the flash
storage disaggregation stack can be classified into two main
types: centralized and decentralized. In a centralized setup,
a server uses overall information, such as resource availabil-
ity and application requirements, to construct non-conflicting
policies for schedulers. This ensures unification across the
different components. However, this centralized approach has
limitations in terms of scalability, as it may not be able to han-
dle a large number of applications and schedulers effectively.
Examples of literature that have explored this centralized
approach include IOFlow [27] and Pulsar [1].

On the other end, there exist multiple decentralized ap-
proaches. Gupta et al [15]. suggest modification of congestion
control to prioritize certain flows over others, where applica-
tion I/O flows with low latency or high throughput storage
requirements can get similar support from the network. An-
other example is the RackBlox [24] system, which takes a
complementary approach by performing end-switch to flash
I/O scheduling. This helps alleviate delays caused in other
stages of the disaggregation stack, effectively unifying the
different components. The decentralized approaches aim to
address the scalability limitations of the centralized approach
by distributing the unification and coordination tasks across
multiple components or layers of the system.

By exploring both centralized and decentralized mecha-
nisms, the literature has provided a range of strategies for
cloud providers to achieve unification and coherence across
the various components and requirements of their virtualized
services.

6 Conclusion

This survey examined the performance optimization (RQ1)
and unified QoS challenges and mechanisms (RQ2) in dis-
aggregated flash storage architectures, which have become
increasingly important in cloud environments to accommo-
date dynamic resource requirements.

RQ1: What are the different mechanisms and their trade-
offs for improving the performance of disaggregated flash

7



storage? The survey presented the optimizations made to the
various components of the flash storage disaggregation stack.
For the network component, the optimizations are discussed
in Section 4.1. For the storage and network interface on the
initiator side, the optimizations are covered in Section 4.2.
For the storage and network interface on the target side, the
optimizations are presented in Section 4.3.

RQ2: What are the challenges and mechanisms for pro-
viding a unified network and storage QoS guarantee in dis-
aggregated flash storage? The survey covers the following:
Section 5.1 discusses the challenge from semantics difference
for unifying storage and network for end-to-end QoS across
the disaggregated infrastructure. Section 5.2 then presents the
different mechanisms and approaches proposed for unifica-
tion.

References
[1] ANGEL, S., BALLANI, H., KARAGIANNIS, T., O’SHEA, G., AND

THERESKA, E. End-to-end performance isolation through virtual
datacenters. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14) (2014), pp. 233–248.

[2] BARROSO, L. A., HÖLZLE, U., AND RANGANATHAN, P. The data-
center as a computer: Designing warehouse-scale machines. Springer
Nature, 2019.

[3] BORKAR, S., AND CHIEN, A. A. The future of microprocessors.
Commun. ACM 54, 5 (may 2011), 67–77.

[4] CAULFIELD, A. M., AND SWANSON, S. Quicksan: a storage area
network for fast, distributed, solid state disks. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (New York,
NY, USA, 2013), ISCA ’13, Association for Computing Machinery,
p. 464–474.

[5] CULLY, B., WIRES, J., MEYER, D., JAMIESON, K., FRASER, K.,
DEEGAN, T., STODDEN, D., LEFEBVRE, G., FERSTAY, D., AND
WARFIELD, A. Strata:{High-Performance} scalable storage on virtu-
alized non-volatile memory. In 12th USENIX Conference on File and
Storage Technologies (FAST 14) (2014), pp. 17–31.

[6] DELL INC. Poweredge pcie express flash ssd. http://www.dell.
com/learn/us/en/04/campaigns/poweredge-express-flash,
2015. Accessed: 2024-04-10.

[7] ESMAEILZADEH, H., BLEM, E., ST. AMANT, R., SANKARALINGAM,
K., AND BURGER, D. Dark silicon and the end of multicore scaling.
SIGARCH Comput. Archit. News 39, 3 (jun 2011), 365–376.

[8] FACEBOOK INC. Open compute project. http://www.opencompute.
org/projects, 2015. Accessed: 2024-04-10.

[9] FERDMAN, M., ADILEH, A., KOCBERBER, O., VOLOS, S., AL-
ISAFAEE, M., JEVDJIC, D., KAYNAK, C., POPESCU, A. D., AILA-
MAKI, A., AND FALSAFI, B. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. SIGARCH Comput. Archit.
News 40, 1 (mar 2012), 37–48.

[10] FUSION IO. Atomic series server flash. http://www.fusionio.com/
products/atomic-series, 2015. Accessed: 2024-04-10.

[11] GAO, Y., LI, Q., TANG, L., XI, Y., ZHANG, P., PENG, W., LI, B.,
WU, Y., LIU, S., YAN, L., FENG, F., ZHUANG, Y., LIU, F., LIU, P.,
LIU, X., WU, Z., WU, J., CAO, Z., TIAN, C., WU, J., ZHU, J., WANG,
H., CAI, D., AND WU, J. When cloud storage meets RDMA. In 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21) (Apr. 2021), USENIX Association, pp. 519–533.

[12] GOOTZEN, P.-J., PFEFFERLE, J., STOICA, R., AND TRIVEDI, A. Dpfs:
Dpu-powered file system virtualization. In Proceedings of the 16th
ACM International Conference on Systems and Storage (New York,
NY, USA, 2023), SYSTOR ’23, Association for Computing Machinery,
p. 1–7.

[13] GU, W., XIE, X., AND DONG, D. Ltnot: Realizing the trade-offs
between latency and throughput in nvme over tcp. In Algorithms and
Architectures for Parallel Processing (Cham, 2023), W. Meng, R. Lu,
G. Min, and J. Vaidya, Eds., Springer Nature Switzerland, pp. 412–432.

[14] GU, W., XIE, X., ZHANG, W., AND DONG, D. A transformable
nvmeof queue design for better differentiating read and write request
processing. In 2022 IEEE 28th International Conference on Parallel
and Distributed Systems (ICPADS) (2023), IEEE, pp. 546–553.

[15] GUPTA, J., KANT, K., PAL, A., AND BISWAS, J. Configuring and
coordinating end-to-end qos for emerging storage infrastructure. ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems 9, 1 (2024), 1–32.

[16] GUPTA, M., SINGH, D., AND GUPTA, B. Literature review: Improving
the quality of services in cloud computing environment.

[17] HWANG, J., CAI, Q., TANG, A., AND AGARWAL, R. TCP RDMA:
CPU-efficient remote storage access with i10. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20)
(Santa Clara, CA, Feb. 2020), USENIX Association, pp. 127–140.

[18] HWANG, J., VUPPALAPATI, M., PETER, S., AND AGARWAL, R.
Rearchitecting linux storage stack for µs latency and high through-
put. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21) (July 2021), USENIX Association, pp. 113–
128.

[19] KLIMOVIC, A., KOZYRAKIS, C., THERESKA, E., JOHN, B., AND
KUMAR, S. Flash storage disaggregation. In Proceedings of the
Eleventh European Conference on Computer Systems (New York, NY,
USA, 2016), EuroSys ’16, Association for Computing Machinery.

[20] KLIMOVIC, A., LITZ, H., AND KOZYRAKIS, C. Reflex: Remote flash
local flash. ACM SIGARCH Computer Architecture News 45, 1 (2017),
345–359.

[21] LI, H., HAO, M., NOVAKOVIC, S., GOGTE, V., GOVINDAN, S.,
PORTS, D. R. K., ZHANG, I., BIANCHINI, R., GUNAWI, H. S., AND
BADAM, A. Leapio: Efficient and portable virtual nvme storage on
arm socs. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems (New York, NY, USA, 2020), ASPLOS ’20, Association for
Computing Machinery, p. 591–605.

[22] LI, Q., XIANG, Q., WANG, Y., SONG, H., WEN, R., YAO, W., DONG,
Y., ZHAO, S., HUANG, S., ZHU, Z., WANG, H., LIU, S., CHEN, L.,
WU, Z., QIU, H., LIU, D., TIAN, G., HAN, C., LIU, S., WU, Y.,
LUO, Z., SHAO, Y., WU, J., CAO, Z., WU, Z., ZHU, J., WU, J.,
SHU, J., AND WU, J. More than capacity: Performance-oriented
evolution of pangu in alibaba. In 21st USENIX Conference on File
and Storage Technologies (FAST 23) (Santa Clara, CA, Feb. 2023),
USENIX Association, pp. 331–346.

[23] MIAO, R., ZHU, L., MA, S., QIAN, K., ZHUANG, S., LI, B., CHENG,
S., GAO, J., ZHUANG, Y., ZHANG, P., LIU, R., SHI, C., FU, B., ZHU,
J., WU, J., CAI, D., AND LIU, H. H. From luna to solar: the evolutions
of the compute-to-storage networks in alibaba cloud. In Proceedings
of the ACM SIGCOMM 2022 Conference (New York, NY, USA, 2022),
SIGCOMM ’22, Association for Computing Machinery, p. 753–766.

[24] REIDYS, B., XUE, Y., LI, D., SUKHWANI, B., HWU, W.-M., CHEN,
D., ASAAD, S., AND HUANG, J. Rackblox: A software-defined rack-
scale storage system with network-storage co-design. In Proceedings
of the 29th Symposium on Operating Systems Principles (New York,
NY, USA, 2023), SOSP ’23, Association for Computing Machinery,
p. 182–199.

[25] SAKALLEY, D. Using fpgas to accelerate nvme-of based storage
networks. Flash Memory Summit 2017 (2017), 8–11.

8

http://www.dell.com/learn/us/en/04/campaigns/poweredge-express-flash
http://www.dell.com/learn/us/en/04/campaigns/poweredge-express-flash
http://www.opencompute.org/projects
http://www.opencompute.org/projects
http://www.fusionio.com/products/atomic-series
http://www.fusionio.com/products/atomic-series


[26] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R. The
hadoop distributed file system. In 2010 IEEE 26th symposium on mass
storage systems and technologies (MSST) (2010), Ieee, pp. 1–10.

[27] THERESKA, E., BALLANI, H., O’SHEA, G., KARAGIANNIS, T., ROW-
STRON, A., TALPEY, T., BLACK, R., AND ZHU, T. Ioflow: a software-
defined storage architecture. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (New York, NY, USA,
2013), SOSP ’13, Association for Computing Machinery, p. 182–196.

[28] TRIVEDI, A., AND BRUNELLA, M. S. Cpu-free computing: A vision
with a blueprint. In Proceedings of the 19th Workshop on Hot Top-
ics in Operating Systems (New York, NY, USA, 2023), HOTOS ’23,
Association for Computing Machinery, p. 1–14.

[29] TRIVEDI, A., IOANNOU, N., METZLER, B., STUEDI, P., PFEFFERLE,
J., KOURTIS, K., KOLTSIDAS, I., AND GROSS, T. R. Flashnet:
Flash/network stack co-design. ACM Trans. Storage 14, 4 (dec 2018).

[30] XIAO, Y., XIE, X., LI, Q., QIAO, X., AND GU, W. Spanof: A scalable
and performant architecture for nvmeof-based storage disaggregation
with limited network resources. Electronics 12, 13 (2023).

[31] ZHANG, J., HUANG, H., ZHU, L., MA, S., RONG, D., HOU, Y., SUN,
M., GU, C., CHENG, P., SHI, C., AND WANG, Z. Smartds: Middle-
tier-centric smartnic enabling application-aware message split for disag-
gregated block storage. In Proceedings of the 50th Annual International
Symposium on Computer Architecture (New York, NY, USA, 2023),
ISCA ’23, Association for Computing Machinery.

9


	Introduction
	Study design
	Research goal
	Scope
	Methodology

	Background
	Storage disaggregation stack
	Processing pipeline per core

	Performance in flash storage disaggregation
	Network
	Storage and network interface in the initiator
	Batching of I/O request
	Hardware offloading of storage virtualization services

	Storage and network interface in the target
	Request processing model in the target
	CPU free

	Summary

	Enforcing unified network and storage quality of service
	Challenge of semantic gap in unifying network and storage
	Mechanisms for unifying network and storage

	Conclusion

