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Abstract

In an era where real-time data processing and high-throughput applications

are integral to industries such as finance, e-commerce, healthcare, and gaming,

ensuring high performance in data storage systems is crucial. Redis, widely

adopted for its speed, is central to these environments, supporting applica-

tions ranging from caching and session storage to real-time analytics and data

streaming. As the demands on these systems grow, optimizing I/O operations

is increasingly important. With faster storage technologies and the need for

low-latency operations, traditional I/O mechanisms are becoming latency bot-

tlenecks.

The key scientific question addressed in this thesis is: “How does the integration

of io_uring affect Redis AOF? “ To answer this question, this thesis introduces

AOFUring, an extension of Redis’s AOF persistence mode that leverages the

io_uring API to to improve the performance of Redis AOF I/O operations.

By comparing AOFUring with existing persistence modes, this work provides

insight into the trade-offs between throughput, latency, and resource utilisation.

Additionally, it explores how such a design and asynchronous I/O (AIO) in

general might affect data correctness and durability.

AOFUring’s performance presented a mixed outcome. While it achieved through-

put comparable to AOF (fsync=everysec), AOF (fsync=no), and RDB modes,

this came at the cost of significantly higher CPU usage, averaging 2.x times

more than these modes and 19.x times more than AOF (fsync=always). Al-

though the increased resource consumption is notable, the more critical concern

is the potential risk of data loss during system failures due to the asynchronous

nature of io_uring, which we explore in Chapter 3.

The code for AOFUring is openly available at: https://github.com/

daraccrafter/Thesis-Redis-IO_Uring.git.

https://github.com/daraccrafter/Thesis-Redis-IO_Uring.git
https://github.com/daraccrafter/Thesis-Redis-IO_Uring.git
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Introduction

1.1 Context

In the era of technology, efficient data storage systems are critical. Fast-performing data

storage systems are essential for a multitude of applications, especially in the domain of

High-Performance Computing (HPC) and Data Intensive Scalable Computing (DISC). As

the volume of data to be processed expands, systems require storage systems which have

the capacity to handle large amounts of data.

Among the various data storage solutions, Redis stands out as a widely adopted in-

memory data structure store known for its speed. It is commonly used in scenarios requiring

rapid data access, such as gaming and real-time analytics (1), making it an integral part

of many big data and HPC environments. Providing robust and scalable storage solutions

that support critical sectors such as industry, healthcare, and government makes advanced

computing technology more accessible and beneficial to society as a whole (1). Redis

addresses this need by offering versatile storage options that ensure both performance and

durability. To achieve this, Redis offers two distinct persistence modes: snapshotting (2)

(Redis Database) and journaling (3) (Append-Only File). The append-only file (AOF)

proves to be more reliable; however, Gottesman et al. state that this mechanism raises a

performance problem as it is quite slow (4).

Recent advances in storage systems introduce io_uring, a modern asynchronous I/O

API. A recent study finds that io_uring promises to reduce latency and improve through-

put, by reducing the inefficiencies of traditional system call mechanisms (5). Hence, ex-

ploring the integration of io_uring into Redis’s AOF mechanism to enhance its write

and fsync performance is a crucial step forward. The primary challenge of integrating

io_uring into Redis AOF lies in ensuring compatibility with existing functionalities. The
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1. INTRODUCTION

interface significantly affects functionality because standard I / O operations are based on

system calls like fsync and write, which work differently on io_uring. Shifting to io_uring

involves rethinking how Redis handles these I/O operations.

This research presents a design for incorporating io_uring into the AOF persistence

mode, referred to as AOFUring. The study examines the throughput and latency benefits,

potential, and limitations of this design. In addition, a performance analysis is performed,

comparing various AOF configurations (Section 2.2), RDB, and AOFUring.

1.2 Problem Statement

In Redis, the AOF journaling mechanism guarantees data durability by logging every

operation that changes the internal state or data (i.e., Redis write commands), ensuring

recoverability in case of system failures by replaying the log upon reboot. Conventional im-

plementations of journal persistence modes use POSIX I/O, which is based on system calls

such as write and fsync, which impose significant performance overhead. Moreover, studies

state that the AOF mechanism raises a performance issue due to logging transactions to

an append-only log file (4). This causes significant performance impact as persistence is

not made until the AOF log is flushed to the disk, slowing down the process. Therefore,

providing a fast and reliable in-memory key value store that can compete with traditional

on-disk databases is a challenging endeavour.

On the other hand, the snapshot persistence mode Redis Database (RDB) performs

comparably better, although there is a higher risk of data loss due to the intervals in which

the snapshots are taken. While this paper does not focus on improving RDB performance,

the comparison of the AOF optimization with Redis’s standard persistence mode provides

a better insight on advancing its performance.

The main objective of this thesis is to incorporate io_uring into Redis AOF persistence

mode and evaluate it against other persistence modes. Although this thesis does not delve

deeply into the data durability of such a system, it lays the groundwork for future research

into optimising asynchronous I/O stores.

1.3 Research Questions

To evaluate AOFUring, we break down the problem of assessing the implementation of

io_uring into the following research questions:
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1.4 Research Methodology

• (RQ1) How does the performance of AOFUring compare to traditional Redis persis-

tence modes? This research aims to compare the performance of AOFUring with both

Redis AOF (in three different configurations) and RDB persistence modes. Evaluat-

ing performance trade-offs between AOFUring, standard AOF, and RDB is crucial

to determining how io_uring affects AOF. By directly comparing the standard AOF

with the io_uring-enhanced AOF, we aim to measure the progress and effectiveness

of io_uring in mitigating performance bottlenecks caused by system calls.

• (RQ2) Can AOFUring ensure data correctness and durability? This research ques-

tion aims to investigate how the integration of io_uring into Redis AOF (AOFUring)

affects data correctness and durability.

1.4 Research Methodology

Initially, various Redis AOF configurations will be set up and benchmarked to identify

performance bottlenecks and understand how these configurations influence throughput

and latency. This will be followed by an exploration of io_uring (6), along with Liburing

(7), a library designed to facilitate the use of io_uring. Based on these findings, a design

will be developed to improve the performance of Redis AOF. Following this, io_uring will

be integrated into the Redis AOF persistence mechanism according to the proposed design.

RQ1 will be addressed through a series of performance tests. Finally, to address RQ2, a

data correctness test is conducted, and a hypothesis regarding the system’s durability is

formulated.

1.5 Thesis Contributions

This thesis makes contributions:

• Conceptual Contribution: Development and analysis of a design that integrates

io_uring into Redis’s AOF persistence mode, offering practical insights into the

impact of asynchronous I/O on key-value store performance and reliability.

• Experimental Contribution: Execution of comprehensive benchmarks to measure

the effects of io_uring on Redis’s AOF persistence mechanism, specifically analyzing

improvements and trade-offs in latency, throughput, resource consumption (CPU and

memory), data durability and correctness.

3



1. INTRODUCTION

• Artifact Contribution: A fully functional, open-source implementation of io_uring

integrated with Redis AOF, available for community use and further research at

https://github.com/daraccrafter/Thesis-Redis-IO_Uring.git.

• Societal Contribution: This research contributes to improving the performance

of data storage systems, which is critical to supporting the scalability of digital

infrastructure in various sectors dependent on HPC. The findings help inform future

developments in the field, supporting the goals outlined in the CompSys Manifesto

(8).

1.6 Plagiarism Declaration

I confirm that this thesis work is my own, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.

1.7 Thesis Structure

This chapter provides a high-level overview of modern data persistence challenges, high-

lighting key issues, and exploring potential solutions. Chapter 2 covers the background

knowledge on Redis data persistence, focussing on the AOF and RDB mechanisms, as well

as the background of io_uring. Chapters 3 and 4 detail the design and implementation

of integrating io_uring with Redis AOF. Chapter 5 then presents the results and evalua-

tions, including all relevant benchmarks. Chapter 6 contextualises the work within related

research. Finally, Chapter 7 addresses the research questions, discusses limitations, and

suggests directions for future work.
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2

Background on Redis and io_uring

Redis is an in-memory key-value store primarily used as a cache or a database. One notable

feature of Redis is its robust data persistence mechanisms. These mechanisms ensure that

the data remains intact and can be recovered even in the event of a system failure, or

shutdown. Understanding the different persistence methods used by Redis is crucial for

optimizing its performance. In this Chapter, we will explore the two primary persistence

mechanisms employed by Redis: RDB (Redis Database) and AOF (Append-Only File). By

examining their advantages and limitations, we aim to provide a comprehensive comparison

that highlights their suitability for different use cases and their impact on performance and

data integrity. Additionally, we will explore io_uring(6), a modern asynchronous I/O API

in Linux.

2.1 RDB Persistance Mode

RDB (Redis Database) is a persistence mechanism in Redis that creates point-in-time

snapshots of the in-memory database. This method allows Redis to save the state of the

database at specific intervals. RDB is typically used in scenarios where fast startups are

crucial, and occasional data loss is acceptable. For example, it is ideal for environments

where read-heavy operations dominate and where data can be reconstructed if lost. RDB

offers several advantages that make it suitable for specific use cases (9):

• Fast Restarts: RDB files are compact and can be quickly loaded into memory,

providing a fast way to restart Redis instances.

• Portability: RDB files can be easily copied to create backups or to migrate data

across different servers.

5



2. BACKGROUND ON REDIS AND IO_URING

• Increasing Throughput: RDB optimizes Redis performance by offloading per-

sistence tasks to a forked child process. This ensures that the main Redis process

remains focused on handling client requests without performing any disk I/O opera-

tions.

However, RDB also has some limitations that need to be considered (9):

• Data Loss Risk: Since snapshots are taken at intervals, any changes made between

snapshots are lost if a failure occurs.

• Infrequent Updates: If snapshots are not taken frequently, the restored data may

be outdated, reflecting the state of the database at the time of the last snapshot.

This becomes problematic if a system failure occurs before the next snapshot, as the

in-memory datastore will be reconstructed from the most recent snapshot, potentially

containing stale data.

RDB snapshots are created using the SAVE or BGSAVE commands (9):

• SAVE: This command blocks the main Redis thread, which writes the snapshot to

disk. While it ensures consistency, it can impact performance, especially for large

datasets.

• BGSAVE: This command forks a child process to create the snapshot, allowing the main

Redis thread to continue processing commands. This approach minimizes disruption

to Redis’s in-memory processing.

RDB snapshots can be configured in the Redis configuration file (redis.conf) using the save

directive. This directive specifies the intervals at which snapshots should be taken. For

example:

save 900 1

save 300 10

save 60 10000

These lines indicate that a snapshot will be taken if:

• At least one key has changed in 900 seconds (15 minutes).

• At least 10 keys have changed in 300 seconds (5 minutes).

• At least 10,000 keys have changed in 60 seconds (1 minute).

6



2.2 AOF Persistance Mode

In the default Redis configuration, RDB snapshots are triggered based on the number of

key changes within specified intervals. By default, Redis will save the database under the

following conditions:

• After 3600 seconds (1 hour) if at least 1 change has been performed.

• After 300 seconds (5 minutes) if at least 100 changes have been performed.

• After 60 seconds if at least 10,000 changes have been performed.

2.2 AOF Persistance Mode

AOF (Append Only File) is another persistence mechanism in Redis that logs every write

operation received by the server to an AOF file. Similar to a Write-Ahead Log (WAL), AOF

ensures that the database state can be reconstructed by replaying the logged commands

from a log file. However, unlike WAL, data is set in memory first and then written to the

disk. AOF offers several advantages that make it suitable for specific use cases (9):

• High Durability: By recording every write operation, AOF ensures a higher level

of data durability, resulting in a lower risk of data loss compared to RDB.

• Flexibility: The appendfsync configuration options allow users to choose between

performance and durability based on their specific requirements.

• Data Consistency: Since AOF logs every operation, it ensures that the database

remains consistent, which is not achieved by RBD, even after unexpected shutdowns.

However, AOF falls short regarding the following aspects (9):

• Performance Impact: Logging every write operation can impact performance,

especially when appendfsync is set to always, as it requires frequent disk I/O.

• Larger File Size: AOF files are typically larger than RDB snapshots because they

log every write command (such as SET and INCR), leading to increased disk space

usage. Although the growing file is reconstructed by the AOF rewrite process, as

explained in Section 2.2.2, it usually remains larger than snapshot files.

• Startup Time: Loading the AOF file during Redis startup takes longer compared

to RDB snapshots, as Redis needs to replay all logged commands to reconstruct the

database state.

7



2. BACKGROUND ON REDIS AND IO_URING

AOF persistence is configured using the appendonly directive in the Redis configuration

file (redis.conf):

appendonly yes

This setting enables AOF persistence, and Redis will start logging all write operations to

the AOF file.

AOF is typically used in scenarios where data durability and consistency are crucial,

and performance can be optimized through configuration. For example, it is ideal for

environments where write-heavy operations are common and data loss is unacceptable.

2.2.1 Understanding the AOF Log File

Figure 2.1: AOF log structure

Figure 2.1 illustrates the structure of data within the AOF log. Each red dashed line in

the figure indicates the separation of commands issued by the client. The AOF log in the

image shows three Redis commands, separated by dashed lines. The AOF log maintains

the order of issued commands: the first command is SET key1 1, which appears first in

the file; the second command is SET key2 2, followed by the third command, INCR key1.

Each command is prefixed with an asterisk (*) indicating the number of arguments,

followed by the arguments themselves, each prefixed by a dollar sign ($) denoting their

length. For example, in the first command, the length is specified as 3 because SET has

three characters (10).

8



2.2 AOF Persistance Mode

As the AOF log grows incrementally with each appended command, Redis may trigger

the creation of a new AOF log through the rewrite process when the file becomes too large,

detailed in the following Section 2.2.2. This process creates a new increment of the AOF

log.

2.2.2 AOF Log Rewrite Mechanism

The AOF rewrite process in Redis is implemented to address the inefficiencies associated

with the growth of the AOF log over time. As the AOF log expands due to the continuous

logging of write operations, it can lead to excessive log sizes and inefficiencies in both

storage and recovery times. The rewrite process optimizes the AOF log by consolidating

only the essential commands necessary to reconstruct the current state of the dataset,

thereby eliminating redundant operations and reducing the overall log size.

For instance, consider a sequence of commands such as SET key1 "value1" followed

by SET key2 "value2", DEL key1, and subsequently SET key2 "value2_modified". In

this case, the initial SET key1 "value1" command becomes redundant once DEL key1

is executed, and the original SET key2 "value2" command is overridden by SET key2

"value2_modified". During an AOF rewrite, these commands would be optimized to

include only DEL key1 and SET key2 "value2_modified", effectively reducing the AOF

log’s size while preserving the integrity of the current dataset.

By default, Redis includes an RDB snapshot in its rewrite process, adding it to the AOF

manifest to serve as a preamble that optimizes data recovery. This approach combines

the benefits of RDB snapshots with AOF logging. The rewrite process begins with Redis

forking a child process to create a new AOF log. This child process generates a binary

RDB snapshot of the current in-memory dataset, which is more compact and faster to load

than replaying the entire command log. Concurrently, the main Redis process continues to

log any new write operations, ensuring they are recorded in both the existing AOF log and

a buffer. Once the new AOF log, containing the RDB snapshot followed by any additional

commands, is complete, it atomically replaces the old AOF log.

2.2.3 Loading Data in AOF Persistance Mode

When Redis operates in AOF persistence mode and encounters both an RDB snapshot and

an AOF log within the same directory (result of an AOF rewrite), it follows a structured

procedure to accurately reconstruct the dataset.

9



2. BACKGROUND ON REDIS AND IO_URING

Redis begins by referencing the AOF manifest within the AOF directory. This manifest

contains metadata about the contents, including whether the directory holds an RDB

snapshot, AOF logs, or both. The AOF manifest guides Redis in determining the correct

sequence for loading the data.

If the AOF manifest indicates the presence of an RDB snapshot, Redis will load this

snapshot first. The RDB snapshot is a representation of the database at a specific point in

time, allowing Redis to rapidly restore the in-memory data structures to their state at the

time the snapshot was taken. This process is significantly faster than replaying a series of

commands from the AOF log.

After successfully loading the RDB snapshot, Redis checks the AOF manifest for any

subsequent AOF logs that need to be applied. These logs contain the incremental changes

made to the dataset after the RDB snapshot was taken. Redis replays these logs in se-

quence, ensuring that the dataset is updated to reflect the most recent state.

2.2.4 Flow of Execution in AOF Persistence Mode

Figure 2.2: AOF Flow of Execution

Figure 2.2 illustrates the progression of a command through Redis, with the numbered

arrows indicating the actual sequence of operations. When a server issues a command, the

Redis server first updates the key in memory. Following this, the command is written to

disk, involving several steps. Initially, the command is saved into a buffer that can contain

multiple operations. Redis accumulates these operations in the buffer until it decides to

write them to disk, typically every millisecond. The timing of an fsync operation depends

on the appendfsync configuration.

As depicted in Figure 2.3, Redis flushes the kernel buffer differently based on the

appendfsync configuration (9):

• appendfsync always: Ensures that every write operation is immediately flushed to

the AOF file, providing maximum data durability at the cost of performance.

10



2.3 I/O API io_uring

Figure 2.3: Illustration of the AOF persistence mechanism depending on appendfsync

• appendfsync everysec: Flushes the AOF buffer to disk every second. This setting

offers a good balance between performance and durability and is the default con-

figuration. In this mode, Redis writes commands to the AOF file and schedules an

fsync operation in a background thread every second. If an fsync operation is still in

progress, Redis may delay subsequent writes to batch multiple operations together,

which reduces the total number of write operations. This batching is especially

beneficial when disk I/O is under heavy load, as it allows Redis to group multiple

commands into a single write, improving efficiency and reducing I/O overhead.

• appendfsync no: Relies on the operating system to flush the AOF buffer to disk,

providing the best performance but with a higher risk of data loss. In this mode,

every command is written to the AOF file immediately without waiting for an fsync

or any batching mechanism, leading to more frequent write operations.

When the AOF log grows too large, Redis initiates an AOF rewrite as explained in Section

2.2.2.

2.3 I/O API io_uring

io_uring is an advanced I/O interface in the Linux kernel that aims to provide highly

efficient and low-latency asynchronous I/O operations (11).

11



2. BACKGROUND ON REDIS AND IO_URING

Figure 2.4 illustrates the architecture of io_uring. The numbered arrows do not strictly

indicate the order of execution. The figure depicts two primary components: the Submis-

sion Queue (SQ) and the Completion Queue (CQ).

The Submission Queue (SQ) is a circular buffer where user space applications submit

I/O requests. Each request is encapsulated in a Submission Queue Entry (SQE). This

architecture allows multiple SQEs to be batched before notifying the kernel, which signifi-

cantly reduces the overhead associated with system calls. The Completion Queue (CQ) is

a circular buffer where the results of the processed I/O requests are stored. Each result is

represented by a Completion Queue Entry (CQE) (12).

Figure 2.4: System Architecture io_uring

The steps illustrated in Figure 2.4 are as follows:

1. Application Submits an SQE: The application obtains an SQE from the Submis-

sion Queue (SQ) and configures it for a specific system call, such as write or fsync.

This involves setting up the SQE with the necessary parameters, including file de-

scriptors, buffer locations, and offsets. By batching multiple SQEs before submission,

the application minimizes the frequency of system calls.

12



2.3 I/O API io_uring

2. Notifying the Kernel: The application notifies the kernel that there are SQEs in

the submission queue, using the io_uring_enter system call (13).

3. Kernel Processes the SQE: The kernel reads the SQE and processes the corre-

sponding I/O operation. The kernel’s role is to execute the requested operation, such

as writing data to a file or syncing the file system.

4. Kernel Produces a CQE: After processing the SQE, the kernel generates a Com-

pletion Queue Entry (CQE) and places it in the Completion Queue (CQ). The CQE

contains the results of the I/O operation, such as the number of bytes successfully

written or an error code if the operation failed.

5. Application Reads and Handles the CQE: The application reads the CQE

from the Completion Queue to retrieve the outcome of the I/O operation. This step

involves interpreting the results, handling any errors, and performing subsequent

actions based on the completion status.

io_uring advantages over POSIX I/O:

• Reduced System Call Overhead: io_uring significantly reduces the overhead

associated with system calls by batching multiple I/O operations into a single system

call, thus enhancing efficiency.

• Asynchronous I/O: io_uring supports asynchronous I/O operations, allowing ap-

plications to perform non-blocking I/O operations without waiting for the completion

of each operation.

Additionally, io_uring provides two different polling modes, unlike native Linux asyn-

chronous I/O (AIO):

• SQ_POLL: Enabled by setting IORING_SETUP_SQPOLL when creating the ring. This

creates a thread that runs in kernel space, polling the submission queue (SQ) ring

for new completions to submit. This eliminates the submission overhead from the

application and allows it to perform I/O operations without invoking a syscall.

• IO_POLL: Enabled by setting IORING_SETUP_IOPOLL when creating the ring. This

enables I/O to files or block devices without triggering interrupts. The application,

when performing a wait-for-events io_uring_enter system call, will actively poll

for completions on the target device. This reduces overhead for high IOPS (In-

put/Output Operations Per Second) applications and decreases latency in general.
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The primary disadvantages of io_uring include:

• Compatibility: io_uring is a relatively recent API, and thus, not all systems or

applications are compatible with it. Its functionality requires a Linux kernel version

of 5.1 or higher.

• Limited Documentation: As an emerging technology, io_uring currently has

fewer resources, documentation, and community support compared to more estab-

lished I/O interfaces.

• Higher Resource Consumption: io_uring can consume more CPU resources

than POSIX I/O. According to (5) io_uring consumes more CPU instructions to

process each I/O request compared to other I/O APIs.

2.4 Liburing: A io_uring Interface Library

Using io_uring directly can be complex and error-prone due to the low-level details in-

volved. Liburing is a library that provides a simplified interface to the Linux kernel’s

io_uring subsystem. It abstracts the complexities of io_uring and offers a more user-

friendly API, making it easier to harness the performance benefits of io_uring without

managing the intricate details of the underlying data structures (7).

A great example of how liburing facilitates io_uring development is through its prepara-

tion functions, such as io_uring_prep_write (14), and io_uring_prep_fsync (15). These

functions take the arguments of the classic system calls they are associated with, along

with an additional pointer to a submission queue entry (SQE). They then configure the

SQE to the desired system call with all the necessary arguments we would traditionally

use in POSIX I/O.
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3

Design of AOFUring

In this chapter, we present the integration design of io_uring with Redis AOF persistence.

The primary objective is to provide a detailed analysis of the design, highlighting its

fundamental components. While there are several possible approaches to designing AOF

around io_uring, one alternative could involve blocking the main thread and returning

an acknowledgment only after the issued Redis command has been fully persisted in the

AOF log. However, the design presented in this chapter has been chosen with the aim of

maximising throughput.

3.1 AOFUring Design Requirments

• REQ1 Correctness

Ensure strict order of operations, guaranteeing that writes are consistently flushed

to the AOF log in the correct sequence.

• REQ2 Compatibility with Existing Redis AOF

Maintain compatibility with existing Redis AOF implementation, replicating core

functionality.

• REQ3 Handling of Failed Writes

Implement a mechanism to manage write failures.

• REQ4 Optimization for Throughput

Design the system to maximize throughput, optimizing AOFUring to handle large

volumes of write operations.
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3.2 Overview of AOFUring

Figure 3.1: High-level overview of AOFUring

Figure 3.1 provides a visual representation of the AOFUring design. The main Redis

Thread is highlighted in red, the Completion Thread in green, while the Kernel and

Kernel Buffer Cache are depicted in shades of blue. The disk, containing the AOF log, is

shown in grey. Arrows with sequential numbers indicate key interactions within the system

that may not occur in strict order of execution.

The following sections walk through the system’s operation as if a request has been made

to write a Redis command to the AOF log.

3.3 Submission of SQEs

The submission process, orchestrated by the main Redis thread, is crucial to enhancing

the durability of the data. Rapid submission of write and fsync SQE is essential to minimise

the risk of data loss. The earlier these SQEs are placed in the Submission Queue, the sooner

the Kernel can process them.
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3.4 SQE Setup and Linking

In Figure 3.1, the main Redis thread first prepares a write SQE, followed by an fsync

SQE, which are then submitted to the Submission Queue ( 1 ). Furthermore, the Kernel

thread is notified ( 2 ) that SQEs are pending in the queue, as detailed in Section 2.3. Upon

notifying the Kernel ( 2 ) and the successful submission of SQEs, two important actions

occur: the Completion Thread is spawned ( 3 ), and the Kernel begins processing the

SQEs ( 4 ). Both of these processes are explained in detail in the following sections 3.5 and

3.6.

A critical limitation of this design is that asynchronous fsyncs are impractical. Consider

a scenario where two Redis SET commands (16) are issued, both with the same key but

with different values, say 1 and 2. Due to the asynchronous nature of fsyncs, there is no

guarantee that the data flushed to the journal (AOF log) will appear in the correct order,

thereby compromising the system’s data integrity. The following Section 3.4 addresses this

issue and REQ1.

3.4 SQE Setup and Linking

io_uring provides a mechanism for linking SQEs through the IOSQE_IO_LINK flag. This

flag ensures that an SQE is processed in the order it was submitted by linking it to the

subsequent SQE (17). Consequently, the Kernel waits for the fsync of a previous write

to complete before processing the next write and its corresponding fsync. By creating a

chain of SQEs, the Kernel processes them sequentially, ensuring that they are written to

the journal in the correct order.

However, linking SQEs introduces certain drawbacks. This approach reduces the perfor-

mance of the Kernel thread responsible for processing these SQEs, as the fsync operation,

which previously blocked the Main Redis Thread, now blocks the Kernel thread. Fur-

thermore, a significant challenge with linking is that if an SQE fails (i.e., the system call

returns an error), all subsequent SQEs in the chain will be discarded. This scenario requires

requeuing the remaining SQEs, potentially leading to a slowdown in the overall performance

of the system.

3.5 Processing of SQEs

Although this aspect is not directly part of the AOFUring design, it is essential to under-

stand how io_uring and the kernel operate to fully grasp the overall architecture of the

system. As detailed in Section 3.3, upon the successful submission of SQEs, the Kernel
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begins processing these entries ( 4 ). For write SQEs, the Kernel handles them in the same

way as the standard write system calls, transferring the data to the Kernel buffer cache

( 5 ). Afterward, the Kernel generates a Completion Queue Entry (CQE) ( 7 ) containing

the result code of the operation. Likewise, fsync SQEs are processed as regular fsync system

calls, triggering a flush of the Kernel Buffer Cache to the disk ( 6 ) and into the AOF log.

The Kernel then produces a CQE with the result code for the fsync operation and places

it in the Completion Queue ( 7 ).

3.6 Completion of CQEs

Once the Kernel is notified ( 2 ) and the SQEs are successfully submitted, as outlined

in Section 3.3, an additional detached thread is spawned to manage the CQEs and their

corresponding results. It is important to note that only a single Completion Thread

exists throughout the lifetime of Redis; the main Redis thread will not spawn additional

completion threads while one is already active.

The Completion Thread operates in a loop, consuming CQEs in batches ( 8 ), maximis-

ing throughput with higher loads following REQ2. For each CQE, the Completion Thread

determines whether it originated from an fsync or write operation and processes the asso-

ciated result codes accordingly. In the case of a successful write, the Completion Thread

simply frees the memory buffer associated with that operation.

A failed write or fsync typically occurs due to a closed file descriptor during the Redis

rewrite process (as detailed in Section 2.2.2). As discussed in Section 3.4, the submission

queue is essentially a chain of linked operations. If one of these operations fails, it results in

the chain being dropped. If the AOF log increment changed (detailed in Section 2.2.1, the

Completion Thread does not requeue these operations because, as explained in Section

2.2.2, Redis has already created a snapshot of the in-memory state. However, if the AOF

log increment has not changed, the operations will be requeued. When this happens,

the Completion Thread detects the failure through the error CQEs and subsequently

requeues the entire chain of operations ( 9 ) to the newly opened AOF log file. This

requeueing process generates a new chain of linked SQEs that mirrors the original sequence

of operations. Although this approach might seem excessive, as it involves potentially

reprocessing a large number of operations, it is necessary to maintain the correctness of

the data, following REQ1 and REQ3.

Furthermore, unlike the default AOF, AOFUring utilises a file descriptor without the

O_APPEND flag. Instead, each write CQE includes a specific write offset, to handle partial
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writes (18). Although partial writes are rare, as discussed in (18), this functionality was

retained in AOFUring to faithfully replicate the original AOF implementation. Using a

file descriptor without the O_APPEND flag enables control over where the remaining data is

written by specifying the desired offset. This allows us to write the unwritten portion of

the buffer to a specific location within the log, following REQ3 and REQ2.

As the process continues, if the Completion Thread does not detect any CQEs, it enters

a busy-wait state for approximately 10 seconds. During this interval, should any CQEs

be detected in the queue, the timer is reset and the thread resumes its processing duties.

However, if the timer elapses without the appearance of new CQEs, the thread terminates

and signals the main Redis thread that it is no longer active. Thus, upon the subsequent

successful submission of SQEs (as discussed in Section 3.3), the Completion Thread will be

reactivated.

3.7 Hypothesis: Data Durability of AOFUring

Ensuring data durability, particularly under failure conditions such as power outages, is

a complex and challenging task. Although accurately simulating these failures, especially

power interruptions, is difficult, we can hypothesize potential scenarios and analyze the

expected behavior of AOFUring based on its design principles.

Fault tolerance in Redis AOF is dependent on the timing of when an operation is con-

sidered successful. For a system to be truly fault-tolerant, an operation should only be

marked as successful once the data has been fully synchronized to disk. This is because, in

a power failure scenario, the primary concern is the extent of potential data loss. Unlike

AOF (always), which ensures immediate synchronisation of each write operation to disk,

AOFUring allows fsync calls to be non-blocking, making some degree of data loss in-

evitable if a failure occurs. Any writes still in the Submission Queue at the time of failure

will be lost. The exact amount of data loss is difficult to predict without specific testing

and largely depends on the system load at the time of failure.

A unique challenge posed by the asynchronous nature of AOFUring is its impact on

fault tolerance. If the server acknowledges a write to the client before it is actually persisted

to disk—due to io_uring’s non-blocking operations—there is a risk that the system may

mistakenly assume the data has been safely written. If a crash occurs while the kernel is

still processing the queued writes and fsyncs, this could lead to unexpected data loss. This

scenario highlights a key aspect of fault tolerance: it is only achieved if the system waits

until synchronization is complete before marking an operation as successful. This issue is
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not exclusive to AOFUring; AOF (everysec) similarly risks data loss due to its reliance

on delayed data synchronization to disk.

In summary, while AOFUring offers performance advantages through its non-blocking

I/O operations, these gains come with potential risks to fault tolerance, particularly in

scenarios involving system failures.
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Implementation of AOFUring

In this section, we explore the implementation of the AOFUring design as presented in

Chapter 3. This chapter details the tools, technologies, and methodologies used to bring

the design to life, while also addressing the challenges encountered during the development

process. The discussion highlights crucial aspects such as the choice of programming

language, thread management, I/O operations, and the specific complexities of integrating

io_uring with Redis AOF persistence.

4.1 AOFUring Implementation Requirements

• REQ1: The implementation should automatically build and install all necessary

dependencies, eliminating the need for users to manage installations manually.

• REQ2: The implementation must retain compatibility with the default AOF, en-

suring that the original functionality remains fully supported.

• REQ3: The implementation should offer configurable options that allow users to

customize AOFUring according to their specific needs.

• REQ4: The implementation should continue to persist data in the AOF log.

• REQ5: The implementation should not alter the main event loop.

• REQ6: The implementation should ensure proper memory management, avoiding

any unfreed memory.
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4.2 Development Environment and Tools

The implementation of AOFUring was conducted in C, utilizing a forked version of the

Redis project. Compilation was handled using the GNU Compiler Collection (GCC) (19),

with support for io_uring integrated via the Liburing 2.6 library. This library is included

within the Redis deps/ directory and is compiled alongside the project, satisfying REQ1.

A kernel version of at least 6.0 is required to ensure compatibility with the necessary

io_uring system calls, and linking 3.4.

The implementation utilized the ext4 filesystem. Research has shown that different

filesystems can significantly impact performance, particularly in I/O-intensive applica-

tions like Redis. For instance, a conference paper (20) highlights that ext4 may introduce

substantial I/O amplification due to its metadata handling, which can degrade perfor-

mance under heavy workloads. While Redis is not LSM-based, similar concerns regarding

filesystem I/O patterns and fragmentation should be considered.

Debugging and troubleshooting were performed using the GNU Project Debugger (GDB)

(21), which was instrumental in identifying and resolving issues during implementation.

For performance evaluation, the built-in benchmarking tool, redis-benchmark (22), was

employed. This tool generated workloads and provided key performance metrics, including

requests per second (RPS) and latency, for assessing the performance of different Redis

persistence mechanisms, including AOFUring.

4.3 AOFUring Configuration

In the implementation of AOFUring, specific configuration options are employed to tailor

the behavior of liburing to the system’s needs, satisfying REQ3. These configurations

can be found in the redis.conf file in the root of the project.

1. appendonly-liburing: This option enables the use of liburing for AOF operations.

When set to ’yes’, Redis utilizes the io_uring interface for handling AOF tasks. The option

set to ’no’ utilizes default AOF, satisfying REQ2.

2. liburing-queue-depth: This setting controls the depth of the liburing queue,

determining how many I/O operations can be queued simultaneously. It allows users to

specify different levels, such as ’xs’, ’s’, ’m’, ’l’, ’xl’, and ’xxl’, corresponding to 1024, 2048,

4096, 8192, 16384, and 32768 operations, respectively. In the development and testing

phases, the ’xl’ queue depth is utilized.
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3. liburing-retry-count: This configuration sets the number of retries for obtaining

a Submission Queue Entry (SQE) in liburing. The retry count can be adjusted with

levels ’xs’, ’s’, ’m’, ’l’, ’xl’, and ’xxl’, representing 3, 10, 50, 100, 500, and 1000 retries,

respectively. Under high concurrent loads (e.g., 1,000,000 requests over 100 concurrent

connections), the queue depth might not suffice, potentially causing dropped SQEs. This

parameter enhances robustness by permitting multiple attempts to secure an SQE. During

development and testing, the ’xl’ retry count is utilized.

4. liburing-sqpoll: This option enables the SQPOLL mode in liburing (23), where

the kernel continuously polls the Submission Queue. In this mode, the kernel spawns an

additional thread dedicated to polling the Submission Queue. When utilizing this option,

files are registered using the io_uring_register function provided by liburing (24). Fix-

ing and registering files or user buffers allows the kernel to maintain long-term references

to internal data structures or establish long-term mappings of application memory, signifi-

cantly reducing the overhead for each I/O operation (24). This configuration did not yield

significant performance improvements; throughput and latency remained unchanged, while

CPU usage increased due to the additional kernel thread. It was primarily an experimental

setup used during implementation.

5. correct-test: This option is set to ’no’ by default. When enabled (setting it to ’yes),

it triggers a log entry when the final fsync of the correctness test workload completes. Since

the Redis server may still be persisting requests even after all of them have been committed

to memory. This entry is then used in the correctness test to verify that all data has been

safely persisted before the server is shut down.

6. correct-test-reqnum: The correctness test uses this option to set the number of

requests issued during the test, therefor defining what is the completing fsync.

4.4 AOFUring Ring Initialization

The io_uring ring is initialized at startup if the appendonly-liburing configuration op-

tion (Section 4.3) in redis.conf is set to yes. This configuration ensures that Redis

utilizes liburing for its append-only file (AOF) operations.

During the initialization process, the ring is set up with the specified queue depth,

as defined by the liburing-queue-depth configuration option. The initialization is also

integrated into the server state so that the io_uring ring can be shared across various

components of the Redis server. Optionally, by using the liburing-sqpoll flag, the ring

can be initialized in SQPOLL mode.
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4.5 Execution Flow of AOFUring

When a command is received by the Redis server, it first enters the event loop, where

the server updates the in-memory dataset as described in Section 2.2.4. The server then

prepares to persist this command to disk using the Append-Only File (AOF) mechanism.

This is accomplished by adding the command data to the aof_buf buffer. The event loop

is not altered, satisfying REQ5.

Simultaneously, the Redis server’s serverCron function, which manages scheduled tasks,

triggers the flushAppendOnly function every millisecond. The flushAppendOnly function

checks whether aof_buf contains data. If data is present, it calls the aofWriteUring and

aofFsyncUring functions (outlined in Sections 4.6.1 and 4.6.2), replacing the traditional

write() and fdatasync() system calls with their io_uring-based counterparts. These

functions configure the necessary SQE parameters for the write and fdatasync operations.

Once the write and fsync Submission Queue Entries (SQEs) are prepared, they are sub-

mitted to ensure the kernel processes these SQEs promptly. This submission process also

initiates a detached completion thread, process_completions, which manages Completion

Queue Entries (CQEs) and handles any errors, as further described in Section 4.7.

4.6 Submitting Submission Queue Entries

Whenever the Redis flushAppendOnly function is invoked, as mentioned in the previous

section, it prepares the write and fsync SQEs using custom functions that replace the

traditional write() and fdatasync() system calls. These SQEs are then submitted using

the io_uring_submit function. The specifics of these custom functions will be further

discussed in Sections 4.6.1 and 4.6.2. Additionally, the amount of data written is added

to the accumulating write offset. If the AOF log increments due to an AOF rewrite (as

described in section 2.2.2), the accumulated write offset is reset to 0.

4.6.1 AOFUring Write Function

The aofWriteUring function is a key component of the AOFUring implementation, de-

signed to handle write operations using the io_uring interface. Unlike traditional write

functions, aofWriteUring requires additional parameters beyond the standard file descrip-

tor and data buffer. These parameters include a pointer to the io_uring ring structure,

the file descriptor for the target file, the maximum number of retries as specified by the
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liburing-retry-count configuration, the offset in the AOF log, the current AOF log in-

crement, and the sqpoll flag. Unlike the traditional AOF implementation, aofWriteUring

uses a file descriptor without the O_APPEND flag, making the write offset necessary. This

offset determines where data should be written, particularly in the event of a partial write

(as discussed in section 3.6). The implementation still persists Redis commands in the

AOF log, satisfying REQ4.

The function begins with a setup phase, where necessary variables are initialized. This

involves copying the data into a temporary buffer and setting up an OperationData struc-

ture. The OperationData structure encapsulates key details of the operation, including the

operation type (set to WRITE_URING for write operations), the data length (len), the buffer

pointer (buf_ptr), the write offset (write_offset), and the current AOF log increment.

The function then attempts to retrieve an available Submission Queue Entry (SQE) from

the io_uring submission queue. If the function fails to secure an SQE after the number of

retries specified by the liburing-retry-count configuration in Section 4.3, it returns an

error, indicating that the operation could not proceed and the SQE is dropped.

Once an SQE is obtained, the function prepares it for the write operation by speci-

fying the target file descriptor, the data buffer, and the file offset. Following this, ap-

propriate flags are set on the SQE based on the provided configuration arguments. For

example, if the liburing-sqpoll configuration is active, the file descriptor is fixed using

IOSQE_FIXED_FILE. Additionally, a link flag (IOSQE_IO_LINK) is set to chain the current

SQE to the subsequent fsync SQE, ensuring that the write operation is linked to the next

operation.

After setting the necessary flags, the OperationData structure is associated with the SQE

through the user_data field, which essentially takes in a pointer to the allocated structure.

This association allows the completion thread to access and process the operation details

once the write is completed. Finally, the function returns the length of the data written,

indicating the success of the operation and completing the write process.

4.6.2 AOFUring Fsync Function

The aofFsyncUring function is designed to execute fsync operations using the io_uring

interface. This function requires several parameters to manage the fsync operation ef-

fectively. These parameters include a pointer to the io_uring ring structure, the file

descriptor to which the fsync operation will be applied, the maximum number of retries

specified by the liburing-retry-count configuration (detailed in Section 4.3), the sqpoll

flag, and the current AOF log increment.
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The execution of the aofFsyncUring function begins with a setup phase, where the nec-

essary variables are initialized. This setup involves preparing an OperationData structure,

which stores essential details about the fsync operation. The OperationData structure

contains the following fields: the operation type (set to FSYNC_URING to distinguish it from

write operations), the data length (set to 0 for fsync operations), the current AOF log in-

crement, and the buffer pointer (set to NULL as no data buffer is needed for fsync). Unlike

the write function discussed in Section 4.6.1, the fsync function only sets the type of op-

eration to FSYNC_URING so that the completion thread can differentiate between write and

fsync CQEs. Following the setup, the function attempts to retrieve an available Submission

Queue Entry (SQE) from the io_uring submission queue. If the function fails to obtain

an SQE after the specified number of retries, it returns an error, signaling that the fsync

operation could not proceed.

Upon successfully retrieving an SQE, the function prepares it for the fsync operation. This

preparation involves specifying the target file descriptor and setting the IORING_FSYNC_DATASYNC

flag, effectively making the fsync operation an fdatasync. The key difference between fsync

and fdatasync is that while fsync flushes both the file data and metadata to disk, fdatasync

only ensures that the file data and minimal metadata required to retrieve that data are

written, making it generally faster (25). The function then sets the appropriate flags on the

SQE based on the configuration arguments. If the sqpoll flag is enabled, the file descriptor

is fixed using IOSQE_FIXED_FILE. Additionally, a link flag (IOSQE_IO_LINK) is set to chain

the current SQE to the subsequent write SQE, creating a chain of operations (as discussed

in section 3.4).

The next step involves associating the OperationData structure with the SQE through

the user_data field. This association is crucial as it allows the completion thread to access

the necessary information once the fsync operation is completed. The function concludes

by returning a value of 0, indicating the successful execution of the fsync operation.

4.7 Processing Completion Queue Entries

The process_completions function serves as a dedicated detached thread within the AO-

FUring implementation, tasked with handling Completion Queue Entries (CQEs) that the

kernel generates after processing Submission Queue Entries (SQEs). This function manages

cases of errors and frees memory associated with buffer and passed structures.

Upon initialization, the function receives a CompletionThreadArgs structure, which en-

capsulates all the necessary components for its operation. This structure includes a pointer
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to the io_uring ring structure, the batch size of CQEs to be processed (calculated as one-

tenth of the queue depth set in the configuration, as detailed in Section 4.3), a pointer to

the current file descriptors open for the AOF log, a pointer to an integer tracking the AOF

log file increment, a running flag that controls the thread’s execution, and a pointer to a

logging function for error reporting in the main Redis thread. Additionally, it includes a

pointer to a mutex lock, which is used to secure the running flag before any modifications.

The thread is initiated based on the state of the running flag, which is checked after

each successful submission of write and fsync SQEs (as discussed in Section 4.6). A mutex

lock is employed to ensure proper synchronization, particularly when the thread is already

active. The state of the running flag is jointly managed by the main Redis thread and the

completion thread. Initially set to false, the flag is updated to true when the completion

thread starts, signaling that the thread is now running.

The process_completions function operates in a continuous loop, attempting to re-

trieve a batch of CQEs using io_uring_peek_batch_cqe. When CQEs are available, the

function processes each entry according to the operation type specified in the associated

OperationData structure.

For WRITE_URING operations, if the write is succesful the Completion Thread frees

the write buffer memory, satisfying REQ6. Otherwise, if a write operation fails or is only

partially completed, and the AOF log increment at the time the command was issued

matches the current log increment, the function logs the error and retries the operation

with the original arguments by invoking the method detailed in Section 4.6.1. However,

if the AOF log increment has changed, indicating that an AOF rewrite has occurred (as

discussed in Section 2.2.2), the operation is not requeued, since the in-memory database

has already been persisted in a snapshot.

In the event of a partial write, the function adjusts the offset to account for the success-

fully written data before requeuing the operation. This ensures that only the remaining

data is written to the correct location in the file. However, if an AOF rewrite has occurred,

the operation is not requeued because the old AOF log file has already been replaced by a

snapshot of the in-memory state (disscussed in section 2.2.2. Since the snapshot reflects the

complete and accurate state of the database at the point of the rewrite, any partial writes

to the old log file are rendered irrelevant, preventing any possibility of file corruption.

Regarding FSYNC_URING operations, the function assesses the result; if the fsync is suc-

cessful, no further action is taken. However, if the fsync fails and the AOF log increment

remains unchanged, the operation is requeued using the fsync function detailed in section
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4.6.2. If the increment has changed, indicating that an AOF rewrite has occurred, the

operation is not requeued.

After processing each CQE, the function deallocates the associated OperationData struc-

ture, satisfying REQ6, and marks the CQE as completed using io_uring_cqe_seen. This

loop continues as long as there are CQEs available in the Completion Queue. If the queue

becomes empty, the process_completions function enters a busy-wait loop for approxi-

mately 10 seconds, periodically checking for new CQEs. If the timer expires without new

CQEs, the thread acquires a mutex lock, sets the running flag to false, releases the lock,

and exits. The thread will restart when new submissions are made. This procedure ensures

that only one thread is active at any time.
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Evaluation

This chapter evaluates our Redis AOF implementation with io_uring alongside other Re-

dis persistence modes. The evaluation involves benchmarking to measure the performance

of these persistence modes, as well as a data correctness test to ensure proper data per-

sistence. The benchmark primarily focuses on Redis write commands, such as SET, which

store or modify data in the database. Focusing on write commands is crucial for assessing

the underlying performance of writing to the AOF file or creating snapshots. In contrast,

the correctness test combines write commands (to persist the data) with read commands

(to verify that the data is correctly persisted), such as GET (26), which retrieve data from

the database.

5.1 Benchmark Environment

The benchmarks were conducted on a fresh AWS Virtual Private Server (VPS) running

Ubuntu 24.04 with an ext4 filesystem. The hardware configuration includes an AWS

c5a.8xlarge instance featuring an AMD EPYC™ 7R32 processor, 32 vCPUs, and 64GB of

DDR4 memory (27). Storage is provided by an Amazon EBS Provisioned General Purpose

SSD (gp3) (28). The instance is equipped with two EBS volumes: a 10GB volume used for

the root and boot partitions, and a 50GB volume dedicated to running the benchmarks.

The underlying filesystem for all tests is ext4, as discussed in Section 4.2.

5.2 Benchmarking Process

The benchmarking process is designed to evaluate various Redis persistence modes, includ-

ing Redis AOF with three fsync configurations (always, everysec, and no), Redis RDB,

and AOFUring.
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During the benchmarking process, the following metrics are collected:

• Requests per second (RPS): Assessed using the redis-benchmark tool (22),

which provides a quantitative measure of the throughput achieved by the Redis server.

• System calls: Monitored through strace (29), capturing and analyzing the system

calls executed by the Redis process to provide insights into the operational overhead.

• CPU load: Gathered using the Python psutil library (30), offering detailed infor-

mation on CPU utilization throughout the benchmarking period.

• Memory usage: Also monitored via the Python psutil library (30), which records

the memory consumption associated with the Redis process.

• Latency: Measured by the redis-benchmark tool (22), which includes the average,

minimum, maximum, p50, and p99 latency.

The RPS (Requests Per Second) and latency metrics are selected to demonstrate the

efficiency of different modes in handling commands. RPS serves as the primary performance

metric, while latency, which generally correlates with RPS, provides additional context to

explain variations in throughput between modes. CPU and memory usage metrics are

included to assess the resource intensity of each mode, helping to understand the trade-

offs between performance and resource consumption. System call analysis is conducted to

further explain the performance differences, offering a deeper understanding of why some

modes are faster or slower than others.

The redis-benchmark tool serves as the primary workload generator in our benchmark-

ing framework, simulating a high volume of requests to the Redis server. We selected the

SET (16), HSET (31), LPUSH(32), and INCR (33) commands because they represent commonly

used Redis write operations that require logging to the AOF log.

The SET command stores a value at a specified key. HSET sets a field in a hash, allowing

structured data storage under a single key. LPUSH adds an element to the head of a list,

useful for implementing queues or stacks. INCR atomically increments the value of a key,

essential for operations like counters. These commands cover a broad spectrum of typical

Redis operations, enabling us to evaluate Redis’s performance in handling various types of

workloads. The sizes of the requests for each command, generated by redis-benchmark,

are as follows: SET is 45 bytes, HSET is 65 bytes, LPUSH is 36 bytes, and INCR is 41 bytes.

Each persistence mode is evaluated by running the redis-benchmark tool (22) three

times. The first test captures the raw performance metrics directly from the redis-benchmark
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output. The second test focuses on resource utilization, using the psutil library (30) in a

separate thread to monitor CPU load and memory usage of the redis-server process .

Lastly, the third test uses strace (29) to capture system calls, including write, fdatasync,

and io_uring_enter. For each type of system call, strace records the average time per

call, the total time taken by each set of system calls (e.g., summing the time for 50 write

calls), and the overall time spent on system calls by the process and any subprocesses it

spawns.

All persistence modes discussed in the following Sections were tested using a workload

of 4,000,000 requests, distributed across the previously mentioned commands. These re-

quests were executed by 50 concurrent clients, adhering to the default configuration of

the redis-benchmark tool. Each benchmark was repeated three times (each repetition

running the raw performance, resource utilisation, and strace tests), resulting in a total

running time of approximately 250 minutes. To ensure consistency, the testing partition

was unmounted, reformatted to ext4, and remounted after each persistence mode was

tested.

5.3 Performance Analysis

This Section presents an analysis of throughput and latency across different persistence

modes. The focus here is on the performance metrics rather than durability.

Figure 5.1: Throughput Comparison across Redis Persistence Modes for Various Commands
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In Figure 5.1, the x-axis displays the various Redis commands executed during the bench-

mark, while the y-axis indicates the number of requests per second (RPS) that Redis can

process. This figure compares the throughput performance across different Redis persis-

tence modes for each command. The results represent the average RPS across all bench-

mark runs, with error bars indicating the corresponding standard deviation.

Figure 5.2: Latency Comparison across Redis Persistence Modes

Similarly, in the latency figure 5.2, the x-axis represents the different Redis persistence

modes, and the y-axis shows the latency in milliseconds. This figure provides a comparison

of latency statistics across the various persistence modes.

The throughput presented in Figure 5.1 indicates that the performance of RDB, AOF

(everysec), and AOF (no) is nearly identical in various tests, as the results fall within

the error bars of each other. Figure 5.2 further supports this observation, revealing that

the p99 latency percentiles are almost identical, with RDB recording the highest at 0.616

ms. The similarity in throughput between AOF (no) and AOF (everysec), despite

the latter performing fsync system calls, can be attributed to AOF (everysec) avoiding

the blocking nature of fsync. Instead, it performs fsync operations every second in the

background using a separate BIO (Background I/O) thread (as discussed in Section

2.2).
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Further analysis of Figure 5.1 reveals that AOFUring also performs comparably in terms

of throughput, with its results falling within the error bars of the other high-performing

persistance modes. Additionally, Figure 5.2 indicates that AOFUring has a slightly higher

p99 latency, at 1.078 ms, which may be attributed to frequent memory allocations for the

write buffer, as discussed in Section 4.6.1.

Lastly, it is evident that AOF (always) significantly lags in throughput compared to other

persistence modes, being 6.x times slower than the others. As discussed in Section 2.2,

AOF (always) performs an fsync after every write, which greatly reduces its throughput.

When examining latencies in figure 5.2, a noticeable spike is observed across all latency

metrics.

Persistance Mode write fdatasync io_uring_enter total
AOF (always) 80006 80098 0 160104
AOF (everysec) 79971 1349 0 81320
AOF (no) 79979 56 0 80035
RDB 0 20 0 20
AOFUring 0 48 79977 80025

Table 5.1: System Call Counts Across Persistence Modes (4,000,000 requests)

Persistence Mode Syscall Single Time (ms) Total Time (s) Overall Time (s)

RDB
write 0 0

0.015fdatasync 1.315 0.001
io_uring_enter 0 0

AOF (always)
write 0.045 3.608

220.085fdatasync 2.702 216.477
io_uring_enter 0 0

AOF (everysec)
write 0.045 3.613

6.537fdatasync 2.17 2.924
io_uring_enter 0 0

AOF (no)
write 0.04 3.241

3.501fdatasync 13.117 0.26
io_uring_enter 0 0

AOFUring
write 0 0

3.156fdatasync 2.789 0.1
io_uring_enter 0.038 3.059

Table 5.2: System Call Times by Persistence Mode (4,000,000 requests)

Table 5.1 summarizes the total number of system calls traced by strace across all
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subprocesses of the main Redis server process, as well as the main process itself. Each

row corresponds to a different persistence mode, and the columns represent the counts

for the three specific system calls. The "total" column is the sum of all these system

calls for each persistence mode. Each persistence mode is tested three times, processing 4

million requests. The table reflects the average of the strace outputs across these three

runs for each persistence mode. The total runtime for the strace tests, spanning all three

iterations, amounts to 180 minutes. The specific runtimes averaged for each persistence

mode were as follows: AOF (no) took approximately 11.29 minutes, AOF (everysec)

took 11.27 minutes, AOF (always) took 15 minutes, RDB took 11.87 minutes, and

AOFUring took 11.33 minutes.

Table 5.2 offers an overview of the time-related metrics for system calls across different

persistence modes, covering the entire duration of the test for each mode. These metrics

are derived from the same strace output as used in Table 5.1. The "Single Time (ms)"

column represents the average duration, in milliseconds, for each system call to execute.

This measurement is derived from the strace output, which tracks the time taken by each

individual system call. This value represents the average duration of one system call across

all processes and subprocesses. The "Total Time (s)" column represents the cumulative

time spent on each system call type during the whole test, expressed in seconds. The

"Overall Time (s)" column shows the total time, in seconds, spent on all system calls for

a given persistence mode.

AOF (always) mode generates the highest total number of system calls, with 160,104

calls, nearly equally split between write and fdatasync. As illustrated in Table 5.2, the

benchmark run with AOF (always) experienced around 220 seconds of blocking time out

of the total 900 seconds. Notably, this blocking time is largely attributed to the 216.5

seconds consumed by fdatasync calls.This extensive blocking is the primary reason for

the significantly lower throughput and higher latency observed in this mode, compared to

others. Despite making the same number of write and fdatasync calls, the write operations

block for far less time, averaging only 0.045 ms per call, while fdatasync blocks for 2.17 ms

per call.

In the AOF (everysec) mode, the fdatasync operations are handled in a separate

process, so the blocking time shown in Table 5.2 is the combined time for both the main

and the BIO processes. Because all fdatasync calls occur in this separate process, the main

event loop is less affected, resulting in throughput and latency similar to the AOF (no)

mode. This design reduces the blocking impact on the main process, explaining the almost

identical performance between these two modes. The AOF (no) mode has a similar total
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number of system calls (80,035), almost all of which are write operations. The blocking

time is even lower at about 3.5 seconds, with fdatasync contributing only 0.26 seconds.

Finally, the AOFUring mode is similar, with 80,025 system calls, the majority being

io_uring_enter calls. The overall blocking time is about 3.16 seconds, with fdatasync

contributing only 0.1 seconds. The io_uring_enter system calls have the lowest single call

time at 0.038 ms, as these calls merely notify the kernel.

5.4 Resource Consumption

The resource consumption across different Redis persistence modes varies significantly,

particularly in CPU and memory usage. These differences stem from how each mode

handles write operations and disk I/O synchronization.

Figure 5.3: CPU Usage Comparison across Different Redis Persistence Modes

Figures 5.3 and 5.4 illustrate the average CPU and memory usage across all benchmark

runs, with error bars indicating the corresponding standard deviation. In both figures,

the x-axis represents the different Redis persistence modes, while the y-axis shows the

corresponding resource usage of the redis-server process: CPU usage as a percentage

in Figure 5.3, and physical memory usage in megabytes in Figure 5.4. The CPU and

memory usages are collected using the psutil Python 3 library (30). The CPU usage

output reflects the total usage across all active cores. Therefore, on our 32-core CPU,

the maximum possible usage is 3200% (with each core contributing up to 100%). It’s
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Figure 5.4: Memory Usage Comparison across Different Redis Persistence Modes

important to note that the CPU idle usage was consistently at 0% before each benchmark

run, ensuring a fair comparison of resource consumption.

AOF (always) demonstrates the lowest CPU usage at 14.18%, largely due to its blocking

fsync calls that cause the main thread to wait for disk synchronization, resulting in reduced

overall CPU activity. In contrast, RDB shows a relatively high CPU usage at 63.75%.

AOF (everysec) and AOF (no) exhibit similar CPU usage levels at 81.22% and 78.69%,

respectively. In AOF (everysec), fsync is performed once per second in the background,

minimizing its impact on the main processing thread. Similarly, AOF (no) relies on the

operating system to manage disk writes, allowing the CPU to continue processing client

requests efficiently without blocking.

Notably, AOFUring exhibits the highest average CPU usage at 189.23%, with each core

consuming between 4% and 8% CPU, with occasional spikes. This can be attributed to

the large number of io_uring worker threads spawned to handle unbounded tasks such as

fsync. As a result, all 32 cores of the EC2 instance are fully active. io_uring is designed to

optimize asynchronous I/O operations by allowing the submission and completion of I/O

tasks without requiring the main thread to block. However, when dealing with operations

like fsync, which can take an indeterminate amount of time to complete, io_uring classifies

these as unbounded work. As highlighted in the Cloudflare blog (34), io_uring addresses

unbounded tasks by spawning worker threads at the application level, rather than blocking

the submission queue. This approach prevents the main thread from stalling but at the cost

36



5.5 AOFUring Data Correctness Test

of significant CPU resources, as each fsync could trigger the creation of multiple worker

threads.

Memory Usage, shown in Figure 5.4, also varies across the modes. AOFUring con-

sumes the most memory on average at 22.81 MB, primarily due to extra allocations for

the write buffer, as explained in Section 4.6.1. RDB uses 15.34 MB of memory, which is

possibly attributed to the overhead of managing the snapshot files. The different AOF con-

figurations AOF (always), AOF (everysec), and AOF (no), have very similar memory

usages. This is because they are all essentially utilize the same implementation under the

hood with small variance regarding the fsync configurations.

5.5 AOFUring Data Correctness Test

In our AOFUring implementation, ensuring data correctness is essential to validating that

the system consistently maintains accurate data under various operational conditions. The

testing framework includes three specific correctness tests, which can be configured with

a required argument specifying the number of requests to issue and an optional argument

to disable AOF rewrites.

The first test sets a sequence of keys with incrementing names (e.g., key_1, key_2, etc.)

and corresponding values, continuing until the specified request count is reached. This test

evaluates whether AOFUring can reliably store and retrieve these key-value pairs. After

setting the keys, the system verifies that each key exists and holds the correct value.

The second test focuses on incrementing a single key repeatedly until the specified request

count is reached. This scenario is designed to assess how AOFUring handles frequent

updates to the same piece of data. The test concludes by verifying that the final value of

the key matches the number of increments specified by the request count.

The third test examines the process of overwriting the same key with incrementing values

until the specified request count is reached. In this case, a single key is repeatedly updated

with values ranging from 1 to the specified request count. The final verification ensures

that the key contains the last value set.

If AOF rewrites are not disabled by the given argument, the tests randomly issue a

BGREWRITEAOF command, which forces a rewrite of the AOF file. Additionally, Redis may

automatically trigger a rewrite on its own during the test execution.

These tests set the correct-test and correct-test-reqnum configurations (discussed

in Section 4.3) to instruct Redis to log when the final fsync occurs. This is particularly

important in the AOFUring implementation, where data might still be persisting after
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the request workload has completed. Once the tests capture this output, the Redis server

can be restarted to force the in-memory dataset to rebuild. Subsequently, we can verify

whether the keys contain the correct values or if they were persisted at all.

In our benchmarking environment, we run these tests with 2,000,000 requests each.

The tests pass successfully in our implementation. The test that sets different keys with

incrementing values confirms that all keys are persisted correctly and hold the expected

values, as evidenced by the CSV file generated by the correctness test, which logs all key-

value pairs. Additionally, both the incrementing test and the test that overwrites the same

key with different values verify that the final key holds the value 2,000,000, indicating that

the data has been correctly persisted.
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Related Work

Reducing latency and increasing throughput in database systems have long been critical

challenges. Various studies have proposed innovative solutions, including optimized logging

mechanisms, advanced storage technologies, and involving asynchronous I/O APIs like

io_uring, to address these issues.

There have been numerous studies aimed at enhancing performance in various journal

modes such as Write-Ahead Logging (WAL). In traditional WAL (35), database sys-

tems such as SQLite write entire pages of data to the WAL file to ensure atomicity and

durability of transactions. This approach, while ensuring data integrity, results in signifi-

cant write amplification and I/O overhead, negatively impacting performance. Park et al.

propose an innovative solution called SQLite/SSL, which addresses these performance

issues by logging only the SQL statements of transactions instead of the entire modified

pages (36). This SQL statement logging method significantly reduces the amount of data

written to disk, thereby decreasing I/O overhead and write amplification.

There are works that optimize logging for novel storage technologies, such as WALTZ,

which leverages the zone append command for ZNS SSDs to enhance performance. Lee

et al. (37) address performance issues in LSM tree key-value stores like RocksDB, Cassan-

dra, and LevelDB with WALTZ. This system improves storage efficiency and performance

by utilizing WAL zone replacement, reservation mechanisms, and lazy metadata manage-

ment, ensuring continuous write operations with minimal latency spikes.

Recent advancements in key-value store optimization have leveraged modern asynchronous

I/O technologies to significantly enhance performance. Prism, a key-value store intro-

duced in a recent conference (38), first writes data to NVM (39) to ensure immediate

persistence and then employs io_uring to asynchronously write data to SSDs. This ap-

proach allows Prism to achieve high throughput and low latency by maximizing SSD
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bandwidth, all while maintaining strong guarantees for data durability.

Another io_uring example is the Walack algorithm (40), which uses io_uring to per-

form asynchronous fsync operations during checkpoints in WAL systems. In WAL, a

checkpoint is the process of transferring changes from the WAL file to the main database

file, ensuring consistency and preventing the WAL file from growing too large (35). By

leveraging asynchronous fsync, Walack reduces latency spikes associated with this pro-

cess, while dynamically adjusting checkpoint timing based on workload.

While io_uring has garnered significant attention for its high performance, it is not

the only Asynchronous I/O (AIO) API available. Recent research by Didona et al. (41)

systematically compares AIO APIs, such as libaio, io_uring, and SPDK. Their study

reveals that while io_uring can achieve performance close to that of SPDK, it requires

tuning with SQ-POLLING enabled and a sufficient number of CPU cores to match SPDK’s

efficiency. Notably, SPDK consistently outperforms the other APIs, offering the fastest

performance, particularly in high IOPS and low-latency scenarios. This work highlights

the trade-offs between ease of use and raw performance among modern storage APIs,

offering valuable insights for developers of I/O-intensive applications.

Other databases have adopted asynchronous I/O to enhance performance. For example,

PostgreSQL uses asynchronous commit to reduce the wait time for transactions. Nor-

mally, PostgreSQL waits for WAL records to be written to disk before confirming a

transaction. With asynchronous commit, transactions can be confirmed without waiting

for the WAL records to be flushed to disk. This approach reduces the latency of trans-

action commits, improving overall throughput. However, in the event of a crash, some

recently committed transactions might be lost because their WAL records were not yet

written to disk (42).

Additionally, InnoDB, the storage engine for MySQL, uses Linux native asynchronous

I/O (AIO) (43) to improve performance by reducing wait times for disk I/O operations.

Asynchronous I/O allows InnoDB to process other tasks while waiting for I/O operations

to complete, enhancing overall throughput and responsiveness (44).
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Conclusion

7.1 Answering Research Questions

• (RQ1) How does the performance of AOFUring compare to traditional

Redis persistence modes?

AOFUring delivers performance closely aligned with that of RDB, AOF (every-

sec), and AOF (no), demonstrating similar throughput, while outperforming AOF

(always) by a factor of 6.x. However, despite its competitive standing among other

high-throughput persistence modes, AOFUring incurs a significantly higher CPU

usage, averaging 2.x times more than RDB, AOF (everysec), and AOF (no).

Moreover, it uses 19.x times more CPU compared to AOF (always).

• (RQ2) What impact does AOFUring have on data correctness and dura-

bility?

Data is correctly stored in AOFUring and contains accurate values, as verified by

our correctness tests conducted with 2,000,000 requests per test. However, durability

is harder to assess because no specific tests were conducted. AOFUring performs

worse in this regard compared to AOF (always), which guarantees durability. The

asynchronous nature of AOFUring introduces the risk that data might be acknowl-

edged as written before it is fully committed to disk. This could result in data loss

if a failure occurs while data is still in the Submission Queue or before the fsync

operation is completed, leading to stale or incomplete data being persisted.
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7.2 Limitations and Future Work

This study examined the performance and durability of various Redis persistence modes,

including AOFUring. While the benchmarks yielded valuable insights, certain limitations

must be considered. First, the use of redis-benchmark as the primary testing tool, rather

than more widely recognised benchmarks such as YCSB (45). Although redis-benchmark

is designed specifically for Redis, it may not fully capture the diversity of workloads or

accurately reflect real-world usage patterns across different environments. Additionally, the

durability analysis was largely theoretical, as reliably simulating real-world power failures

and system crashes posed significant challenges.

Future research should address these limitations by incorporating a broader range of

benchmarking tools, such as YCSB, to enable a more comprehensive evaluation of per-

formance. Expanding the scope of testing to include various hardware configurations and

workload types would also help in providing a more accurate performance profile. More-

over, developing more advanced methods to simulate and measure the impact of power

failures on data integrity would enhance the understanding of durability of AOFUring.

Finally, optimizing AOFUring to reduce its high CPU usage.
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Appendix A

Reproducibility

A.1 Abstract

Appendix A provides an overview of how to access the Redis io_uring artefact and bench-

marks, how to run the artifact, and how to reproduce the results obtained in the evaluation

section.

A.2 Artifact Check-list (Meta-information)

• IMPORTANT! Kernel Requirement: >= 6.0

• Program: Redis io_uring

• Compilation: Make, Python3

• Run-time environment: C standard library, Python3

• Metrics: RPS, Latency Statistics, Memory Usage, CPU Usage, System Calls numbers and
times

• Output: CSVs, Graphs

• Experiments: Comparisons

• Preparation Time: Approximately 10 minutes

• Experiment Completion Time: Depends on how the benchmark is ran and hardware;
for 4,000,000 requests and reformating, around 5 hours.

• Publicly Available: Yes
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A.3 Description

A.3.1 How to Access

To access the complete framework, including Redis io_uring and benchmarks, find it here.

For just the Redis io_uring implementation, find it here.

A.3.2 Software Dependencies

IMPORTANT! Kernel >= 6.0

• make

• gcc

• python3

• strace

• Python libraries:

– pandas

– psutil

– matplotlib

– redis

– redis.asyncio

A.4 Installation

A.4.1 Cloning the Repository

Pull the repository using:

git clone --recurse-submodules https://github.com/daraccrafter/Thesis-Redis-IO_Uring

A.4.2 Ubuntu & Debian-based

Run the ./setup.sh script. This script will:

1. Pull both redis and redis-io_uring git submodules, if not already pulled.

2. Install all necessary dependencies.
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A.4 Installation

3. Build both redis and redis-io_uring.

Execute the following commands in your terminal:

chmod +x setup.sh

./setup.sh

A.4.3 Manual Dependency Installation

If you prefer to install dependencies manually, ensure the following are installed on your

system:

• make

• gcc

• python3

• strace

• Python libraries:

– pandas

– psutil

– matplotlib

– redis

Follow these steps:

1. Pull Git Submodules:

git submodule update --init --recursive

2. Build Redis and Redis-io_uring:

make -C redis

make -C redis-io_uring

3. Copy Redis Tools:
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cp redis/src/redis-benchmark scripts/

cp redis/src/redis-check-aof scripts/

To run the AOFUring implementation itself:

cd redis-io_uring

# Start the Redis server with the specified configuration file (redis.conf)

src/redis-server redis.conf

To issue commands in a separate terminal:

cd redis-io_uring

# Issue a SET command to the Redis server, setting ’key’ to ’1’

src/redis-cli SET key 1

To run redis-benchmark:

cd redis-io_uring

# Run the Redis benchmark tool to test the performance of the ’SET’ command

# -t set: Specifies the ’SET’ command as the operation to benchmark

# -n 100000: Executes the ’SET’ command 100,000 times during the benchmark

src/redis-benchmark -t set -n 100000

A.5 Evaluation and Expected Results

In this section, we will demonstrate how to reproduce our results.

A.5.1 Benchmarks

First, navigate to the scripts directory by executing:

cd scripts

Ensure that the directory contains the necessary executables:

redis-benchmark

redis-check-aof

To run the benchmark without reformatting the filesystem, execute the following com-

mand:

sudo python3 run_benchmarks.py --requests 4000000
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To run the benchmark with reformatting between each test, follow these steps:

cp -r data/RDB-<timestamp> <root-partition>

sudo umount /mnt/ext4

sudo mkfs -t ext4 /dev/<drive>

sudo mount /mnt/ext4

# REPEAT INSTALLATION

sudo python3 run_benchmarks.py --benchmark AOF --requests 4000000

cp -r data/AOF-all-<timestamp> <root-partition>

sudo umount /mnt/ext4

sudo mkfs -t ext4 /dev/<drive>

sudo mount /mnt/ext4

# REPEAT INSTALLATION

sudo python3 run_benchmarks.py --benchmark URING_AOF --requests 4000000

Repeat this sequence three times to achieve results comparable to those presented in the

evaluation.

IMPORTANT! Execute the benchmarks with elevated privileges because strace re-

quires these privileges to function properly.

Benchmark Data: Each Redis configuration directory stores its respective benchmark

data, typically located in benchmarks/<config>/data.

Arguments:

• –benchmark: Specifies which benchmark to run. Options include:

– AOF: Runs the Append-Only File benchmark.

– RDB: Runs the Redis Database benchmark.

– URING_AOF: Runs the benchmark using io_uring with AOF.

If no benchmark is specified, the script will run all three benchmarks by default.

• –requests: Specifies the number of requests to be sent during the benchmark. The

default is 100,000, but for a more extensive test, you can increase this number as

shown in the example (4,000,000 requests).

• –fsync: Defines the fsync mode for the AOF benchmark. Available options include:

– always: Ensures that data is written to disk immediately after each write

operation.

– everysec: Synchronizes data to disk every second.
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– no: Disables synchronization after write operations.

– all: Runs the benchmark for all fsync modes.

The default setting is all.

• –no-strace: When this flag is set, the benchmark runs without invoking strace,

which can reduce overhead and improve performance during the tests. By default,

strace is used.

A.5.2 Data Correctness Test

Navigate to the scripts directory:

cd scripts

To verify the correctness of the data, and run the 3 mentioned tests, you can execute

the following command in the terminal:

sudo python3 correctness-test.py

Arguments:

• –requests: Specifies the number of requests to be used in the benchmark. The

default value is 100,000, but you can adjust this number depending on the scope of

your testing.

• –no-bgrewriteaof: This flag, if set, disables the triggering of the BGREWRITEAOF

command during the test. The BGREWRITEAOF command is typically used to rewrite

the AOF (Append Only File) to reduce its size and optimize its structure. By default,

this feature is enabled, but you can disable it with this flag to test scenarios without

AOF rewriting.

A.5.3 Plotting

To generate plots navigate to the scripts directory:

cd scripts

And execute the script:

sudo python3 plot.py --dir_rdb <path> --dir_aof <path> --dir_uring <path>

--dir <output-dir> --type all
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The directories for each persistence mode can contain many sub directories (for each run)

generated by the benchmark. For example if u run the benchmark without reformatting u

can just execute:

sudo python3 plot.py --dir_rdb benchmark/RDB/data --dir_aof benchmark/AOF/data

--dir_uring benchmark/URING_AOF/data --dir ./output --type all

This will generate all the graphs.

Arguments:

• –dir_rdb: Specifies the directory containing the CSV files for the RDB persistence

mode. This argument is mandatory.

• –dir_aof: Specifies the directory containing the CSV files for the AOF persistence

mode. This argument is mandatory.

• –dir_uring: Specifies the directory containing the CSV files for the URING_AOF

persistence mode. This argument is mandatory.

• –dir: Defines the directory where the generated graphs will be saved. The default

is the current directory.

• –type: Specifies the type of graph to plot. The following options are available:

– rps: Generates a graph comparing the requests per second (RPS) across the

different persistence modes.

– cpu: Generates a graph comparing CPU usage across the different persistence

modes.

– memory: Generates a graph comparing memory usage across the different per-

sistence modes.

– latency: Generates a graph comparing latency statistics across the different

persistence modes.

– all: Generates all of the above graphs.
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