
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Performance Characterization Study of
NVMe Storage Over TCP

Author: Sudarsan Sivakumar (2722524)

1st supervisor: Tiziano De Matteis
daily supervisor: Krijn Doekemeijer, Animesh Trivedi
2nd reader: Balakrishnan Chandrasekaran

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

October 22, 2024

“Computer science is operating system for all innovation”

, by Steve Ballmer

ii

Abstract

Storage is a critical component of Internet services, and as the reliance on

cloud-based services continues to grow, these services demand high performance

from cloud providers. In cloud environments, storage is often disaggregated,

where storage and compute resources are separated. While this provides greater

flexibility and scalability, it can also introduce performance overheads due to

increased network transmission and protocol processing.

Additionally, cloud vendors share resources among multiple users to improve

utilization, which leads to performance interference. This interference can sig-

nificantly impact the performance of cloud storage, especially in disaggregated

storage systems where various resources, such as compute, network, and stor-

age, are involved.

This study investigates and quantifies the performance overheads and interfer-

ence in NVMe over Fabrics using TCP (NVMeoF-TCP), a protocol designed for

block-level storage disaggregation. Through experimentation, we analyze how

different NVMeoF-TCP configurations affect system performance. Our findings

indicate that optimizing default settings can achieve latency reductions of up to

19% and throughput improvements of up to 14.4%. However, compared to lo-

cal storage, NVMeoF-TCP introduces a 27.3% increase in latency and reduces

single-core throughput by 2.58 times. Additionally, our examination of varying

background loads shows that different components of the NVMeoF-TCP stack

respond uniquely to these conditions, with latency interference ranging from

2 to 38 times, depending on the load experienced by the initiator and target

cores. These insights are crucial for optimizing NVMeoF-TCP deployments

and enhancing performance in disaggregated storage environments, paving the

way for more efficient and scalable solutions.

The artifacts of this thesis are available online on GitHub at

https://github.com/bergstartup/NVMeoFTCP-Characterization

https://github.com/bergstartup/NVMeoFTCP-Characterization

iv

Contents

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Context . 2

1.2 Problem Statement . 3

1.3 Research Questions and Methodology . 3

1.4 Thesis Contributions . 4

1.5 Societal Relevance . 4

1.6 Thesis Structure . 4

2 Background 7

2.1 Disaggregated Storage . 7

2.1.1 File-based Disaggregation . 7

2.1.2 Block-based Disaggregation . 7

2.2 Non-Volatile Memory Express (NVMe) . 7

2.3 NVMeoF-TCP . 8

3 Performance Characterization Setup 15

3.1 Experiment Setup . 15

3.2 Application Modelling and Corresponding Performance Metrics 17

4 Configuring NVMeoF-TCP for Performance 19

4.1 Identifying NVMeoF-TCP Configuration Knobs 19

4.2 Evaluating NVMeoF-TCP Polling Configuration Knobs for Performance . . 20

4.3 Summary . 24

i

CONTENTS

5 Evaluating Performance Overhead of NVMeoF-TCP over NVMe 25

5.1 L-app Overhead Quantification . 25

5.2 T-app Overhead Quantification . 26

5.3 B-app Overhead Quantification . 27

5.4 Summary . 28

6 Evaluating Performance Interference in NVMeoF-TCP 29

6.1 Compute Resources and the Saturation Points in NVMeoF-TCP 29

6.2 Experiment Design to Quantify Interference in NVMeoF-TCP 30

6.3 Interference Characterization of the Initiator 31

6.4 Interference Characterization of the Target 33

6.5 Summary . 35

7 Discussion 37

7.1 Limitations of the Study . 37

7.2 Related work . 38

8 Conclusion 41

8.1 Research Question . 41

8.2 Guidelines . 42

8.3 Future Work . 43

References 45

9 Appendix 49

9.1 Artifact Description . 49

9.1.1 Abstract . 49

9.1.2 Artifact Checklist . 49

9.1.3 Description . 49

ii

List of Figures

1.1 General architecture of disaggregated storage 2

2.1 NVMeoF-TCP control plane . 9

2.2 I/O queue pair and core mappings in the initiator of the NVMeoF-TCP . . 10

2.3 Request traversal in NVMeoF-TCP stack 11

4.1 Different completion semantics for NVMeoF-TCP 21

4.2 Plot for p99 latency for default and pollable I/O queues configurations . . . 21

4.3 Plot for IOPS vs Queue depth for default and pollable I/O queues configu-

rations . 22

4.4 Plot for number of context switches vs Queue depth for default and pollable

I/O queues configuration . 22

4.5 Plot for p99 latency(y-axis) for different target polling period(x-axis). 23

5.1 p99 latency plot of NVMe, NVMeoF-TCP(localhost) and NVMeoF-TCP(100

Gbps) . 26

5.2 Throughput plot for NVMe and NVMeoF-TCP 27

5.3 Bandwidth plot for NVMe and NVMeoF-TCP for different block sizes . . . 27

6.1 Plot for latency interference (y-axis) for various background loads (x-axis)

in the initiator core. The higher the y-axis, the higher the latency interference. 32

6.2 Plot for throughput interference (y-axis) for various background loads (x-

axis) in the initiator core. The lower the y-axis, the higher the throughput

interference. 33

6.3 Plot for latency interference (y-axis) for various background loads (x-axis)

in the target core. The higher the y-axis, the higher the latency interference. 34

iii

LIST OF FIGURES

6.4 Plot for throughput interference (y-axis) for various background loads (x-

axis) in the target core. The lower the y-axis, the higher the throughput

interference. 35

iv

List of Tables

3.1 System software configuration of initiator and target 15

3.2 Peripherals configuration of initiator and target 16

3.3 Performance matrix for polling(Block layer) and interrupt affinity(NET_RX_SOFTIRQ) 17

4.1 Throughput and tail latency for default and pollable I/O queues configurations 20

4.2 NVMeoF-TCP configuration used for upcoming experiments in this thesis . 24

6.1 Saturation points of compute resources in the NVMeoF-TCP stack and the

corresponding fio configuration to obtain the saturation point. 29

v

LIST OF TABLES

vi

1

Introduction

In the Netherlands, data centers and related ICT infrastructure play a critical role in

the economy, supporting over 3.3 million jobs and contributing to more than 60% of the

GDP(1). With such a significant economic impact, ensuring the cloud infrastructure oper-

ates smoothly and efficiently is vital. Cloud infrastructure powers most internet services,

offering the scalability and flexibility needed for many applications (2). Companies like

Netflix and Amazon rely on delivering smooth, efficient user experiences, as their revenue

is closely tied to performance. Faster page loads, seamless video streaming, and quick

transaction processing are vital to keeping users satisfied. A Deloitte study reveals that

improving website load times by just one millisecond can increase conversion rates by 8-

10% for retail and travel sites (3). Cloud users enter into Service Level Agreements (SLAs)

that specify expected service performance to ensure consistent performance.

Cloud providers maximize resource usage by sharing infrastructure among multiple users,

a practice known as multitenancy(4). However, multitenancy can result in performance

variability, as different users compete for shared resources(5). This variability poses a

challenge to meeting the performance standards of the SLAs. Therefore, cloud providers

are responsible for ensuring their services remain performant and minimise interference to

meet SLA requirements.

Storage is a critical part of cloud infrastructure. Cloud providers use disaggregation,

where storage is separated from compute resources. Storage requests from compute nodes

are sent over the network to storage servers, making it easier to scale both storage and

compute independently. This also helps reduce the Total Cost of Ownership (TCO) for

providers (6, 7, 8). However, disaggregation can introduce performance overhead due

to transport protocol processing and network transmission. Additionally, performance

interference can arise from the multiple resources involved in disaggregated storage systems.

1

1. INTRODUCTION

This thesis aims to quantify the performance overhead and interference associated with

storage disaggregation in cloud environments. We focus on NVMe over Fabrics using TCP

(NVMeoF-TCP), a protocol designed for block-level disaggregation. Our results show

that, compared to local storage, NVMeoF-TCP introduces a 27.3% increase in latency

and reduces single-core throughput by 2.58 times. The interference analysis reveals that

different components of the NVMeoF-TCP stack respond differently to varying loads, with

performance interference ranging from 2x to 38x depending on the component and load

conditions.

1.1 Context

Figure 1.1: General architecture of disaggregated storage

Typically, remote storage has four hardware components, as shown in Fig1.1: the client

where the applications that issue I/O runs, the network through which the I/O requests

are transferred, the server where the I/O requests from the client are processed, and the

storage medium. A remote storage protocol binds all of them together. The remote storage

protocols determine the transport protocol used and the layer of disaggregation. Usually,

the disaggregation happens either at the file layer or the block layer.

In this thesis, we investigate NVMeoF-TCP, a block layer disaggregation protocol that

uses the TCP transport protocol to access NVMe storage devices remotely. Though there

are several protocols for storage disaggregation, we choose NVMeoF-TCP specifically for

the following reasons:

2

1.2 Problem Statement

• Wide Compatibility: NVMeoF-TCP operates over standard TCP/IP networks, mak-

ing it compatible with the existing network infrastructure of cloud providers.

• Performance: NVMeoF-TCP is an extension of NVMe, a high-performance protocol

for accessing local flash storage devices over PCIe. NVMe has become a standard for

fast, low-latency access to flash storage.

1.2 Problem Statement

Storage disaggregation in NVMeoF-TCP can lead to performance overheads caused by ad-

ditional network transmission and extra processing within the software stack. Furthermore,

performance interference may occur due to resource contention within the NVMeoF-TCP

stack. Therefore, it is essential to quantify the performance overheads and the interference

effects from various resources within the NVMeoF-TCP stack to optimize overall system

performance.

1.3 Research Questions and Methodology

To solve the problems mentioned previously, we present the following research questions

• (RQ1) What are the performance implications of NVMeoF-TCP polling

configurations?

Misconfiguration is a common system issue and can lead to suboptimal performance

(9). Proper configuration of NVMeoF-TCP is essential for achieving optimal perfor-

mance. We specifically focus on polling configurations because they directly impact

how I/O requests are processed, affecting latency and throughput. We aim to iden-

tify configurations that can improve performance and reduce processing delays by

analysing different polling settings. We make use of the following research method-

ologies to answer this research question:

– (M1) Experimental research: designing appropriate micro-benchmarks to quan-

tify a system (10).

– (M2) Open science, open source software, community building, reproducible

experiments(11, 12).

• (RQ2) What is the performance overhead of NVMeoF-TCP compared to

local NVMe?

3

1. INTRODUCTION

Building on the findings from RQ1, we compare the performance overhead of NVMeoF-

TCP to local NVMe, focusing on key metrics such as latency, throughput, and band-

width. To address RQ2, we employ methodologies M1 (experimental research) and

M2 (open science practices) for a thorough and reproducible evaluation.

• (RQ3) What is the performance interference with various loads on com-

pute resources in the NVMeoF-TCP stack?

We study how varying levels of compute load affect performance interference within

the NVMeoF-TCP stack. We do not include network resources, as our setup can-

not generate enough load for useful interference tests, and we exclude SSDs because

their interference behaviour varies too much between SSDs. To answer RQ3, we use

methodologies M1 (experimental research) and M2 (open science practices).

1.4 Thesis Contributions

This thesis makes three contributions. First, we provide different configuration parame-

ters that can positively affect the NVMeoF-TCP performance. Second, we quantify the

performance overhead of NVMeoF-TCP over local NVMe. Third, we also quantify the

performance interference in the compute resources of the NVMeoF-TCP stack.

1.5 Societal Relevance

By 2025, it is estimated that the cloud industry will consume 20% of global electricity

and contribute 5.5% of global carbon emissions(13). In this thesis, we aim to improve

the performance of disaggregated storage and analyze resource interference, helping cloud

providers make better resource-sharing decisions. This can lead to more efficient resource

utilization and ultimately reduce carbon emissions.

1.6 Thesis Structure

In Chapter 2, We provide the necessary background on Disaggregated storage, NVMeoF,

and NVMeoF-TCP internals. In Chapter 3, We present the experiment setup and configure

the parameters of NVMeoF-TCP for better performance. In Chapter 4, We compare the

performance of NVMe and NVMeoF-TCP to answer the RQ1. In Chapter 5, We quantify

the interference caused under loads for different resources in NVMeoF-TCP. In Chapter 6,

we discuss the limitations of the current work and the related works. Finally, in Chapter 7,

4

1.6 Thesis Structure

We conclude by summarizing the findings of this thesis, answering the research questions,

and providing possible future works that could be developed from the findings of this thesis.

Plagiarism Declaration

I confirm that this thesis work is my work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment. I understand

that plagiarism is a serious issue and should be dealt with if found.

5

1. INTRODUCTION

6

2

Background

2.1 Disaggregated Storage

Disaggregated storage refers to separating the storage of data from the computing. This

means that instead of having storage built directly into each server, the storage is placed

separately and connected to the servers through a network. This approach allows easier

scaling, management, and flexibility for the allocation of resources. Disaggregated storage

can be implemented at different layers, most commonly at the file and block levels.

2.1.1 File-based Disaggregation

File-based disaggregation occurs at the file system level. In this model, storage is accessed

remotely via a shared file system protocol such as NFS (Network File System) or distributed

systems like HDFS (Hadoop Distributed File System). Clients request access to entire files,

which are managed and served by a central server or a cluster of storage nodes.

2.1.2 Block-based Disaggregation

Block-based disaggregation operates at a lower layer by providing remote access to storage

at the block level. The common protocols in block disaggregation are iSCSI (Internet

Small Computer System Interface), FCoE (Fibre Channel over Ethernet), and NVMeoF

(Non-Volatile Memory Express over Fabrics).

2.2 Non-Volatile Memory Express (NVMe)

NVMe (Non-Volatile Memory Express) is a high-performance storage protocol over PCIe

designed to maximize the potential of modern non-volatile memory technologies, such as

7

2. BACKGROUND

SSDs. NVMe achieves better performance compared to protocols like SATA and SAS by

exploiting the parallelization of SSD-based storage devices.

NVMe over Fabrics

NVMe over Fabrics (NVMeoF) is an extension of NVMe for disaggregated block storage.

NVMeoF protocol allows NVMe commands to be transmitted over a network fabric, making

remote NVMe devices accessible with similar performance characteristics to local NVMe

storage. The architecture of NVMeoF consists of three components: the initiator, the

target, and the transport protocol. The initiator hosts the application and sends I/O

requests over the network using the transport protocol to the target, while the target

hosts the storage device(s) and processes these I/O requests. The NVMeoF supports the

following transport protocols:

• Fibre Channel

• RDMA

• TCP (focus of this thesis)

2.3 NVMeoF-TCP

We examine the functioning of NVMeoF-TCP by dividing it into two main components: the

control plane and the data plane. In the control plane, we discuss the steps involved in the

initialization of an NVMeoF-TCP remote device, including setting up the target, configur-

ing the transport layer, and establishing the connection between the initiator and target,

along with mapping the namespaces. On the other hand, in the data plane, we explore

queue management and the process of I/O transmission. This includes how NVMeoF-TCP

manages queue pairs for each core and processes I/O requests and responses between the

initiator and target. Additionally, we detail how worker functions handle I/O processing

for both the initiator and the target.

NVMeoF-TCP controlplane

On the target side, any NVMe-based storage devices (marked as 1 in Fig. 2.1) that

need to be accessed by the initiator must be registered with the NVMeoF target module.

To initialize the NVMeoF module, a port must first be registered. This port contains

configuration details such as the transport type (which is TCP in our case), transport

8

2.3 NVMeoF-TCP

Figure 2.1: NVMeoF-TCP control plane

endpoint details (IP address and port), and access specifications (e.g., "Allow all"). Once

the port is registered, the next step is to create a NQN (NVMe Qualified Name) 3 and

map the SSD devices to namespaces 2 .

Each NQN acts as a separate NVMeoF controller, anNVMeoF-TCP-CPd while mul-

tiple SSD devices can be mapped under the same NQN, they must be assigned to dif-

ferent namespaces to ensure proper functionality. On the initiator side, to access these

remote block devices, the target address (IP and port) and the corresponding NQN must

be specified using the nvme connect command, which is part of the NVMeCLI tool(14).

Once the connection to an NQN is successfully established, all SSD devices associated

with that NQN will appear on the initiator as remote block devices (e.g., /dev/nvmeXn1,

/dev/nvmeXn2...) 5 .

By default, each NQN connected from the initiator creates N+1 TCP connections to the

target, where N is the number of cores in the initiator 4 . The number of TCP connections

is controlled by the number of queue pairs, which will be discussed in the upcoming section.

NVMeoF-TCP dataplane

Queue management

When a remote NVMeoF-TCP device is initialized, a queue pair is created for each core in

the initiator. For every queue pair, a corresponding TCP connection is established between

9

2. BACKGROUND

Figure 2.2: I/O queue pair and core mappings in the initiator of the NVMeoF-TCP

the initiator and the target. On the target side, each of these TCP connections generates

an NVMeoF-TCP target queue pair, which acts as a buffer. This buffer is used to receive

requests from the initiator and to handle responses from the local NVMe storage devices.

Worker function

A worker function in the NVMeoF-TCP stack is a callback function responsible for process-

ing a command (CMD) or response that has been added to the corresponding NVMeoF-

TCP queue pair. Each queue pair has its separate worker function. The worker function

can be invoked either synchronously or asynchronously:

• Synchronous call: If invoked synchronously, the worker function is executed in the

same process context that inserted the element into the queue. This means the

process directly calls the function, handling the command/response without deferring

execution.

• Asynchronous call: If invoked asynchronously, the execution of the worker function

is deferred through the work queue interface. This allows the system to schedule

the execution of the function at a later time, reducing the immediate load on the

initiating process. However, the work queue has a constraint: it allows only one entry

per worker function, even if multiple asynchronous invocations occur. This ensures

that only one instance of the worker function is processed at any given time.

10

2.3 NVMeoF-TCP

There are separate worker functions for the initiator and target sides of the NVMeoF-

TCP system:

• Initiator worker function: This function alternates between processing one element

from the send queue (handling an NVMeoF-TCP request) and one from the receive

queue (handling an NVMeoF-TCP response). The function runs for a maximum

of 1 millisecond in each call (a hardcoded limit). If there are still elements left in

the queues when the worker finishes, it requeues itself in the work queue for later

execution.

• Target worker function: The target worker function processes 8 responses and 8

requests in an alternating fashion. During a single execution context, it processes

up to 64 elements from both the send and receive queues. These limits are also

hardcoded. If there are still pending requests or responses in the queues when the

function completes, it requeues itself in the work queue to continue processing.

Figure 2.3: Request traversal in NVMeoF-TCP stack

I/O transmission tracing in NVMeoF-TCP stack

We will be tracing the I/O request submission and response in NVMeoF-TCP (Visually

represented in Fig2.3):

11

2. BACKGROUND

1. (Application to Block layer) The application submits a request to the block layer

queue via a system call.

2. (Block layer to NVMeoF-TCP initiator) In the same process context as the system

call, the block layer request is converted into an NVMeoF-TCP CMD PDU and

added to the NVMeoF-TCP send queue.

3. (NVMeoF-TCP initiator to NIC) In the same context, the NVMeoF-TCP initiator

worker function processes the CMD PDU and performs TCP/IP processing. If there

is no packet backlog, it transmits directly to the NIC, which then forwards the packet

to the target.

4. (NIC to NVMeoF-TCP target) Upon receiving the packet, the target NIC places it in

the RX queue and triggers an interrupt, which schedules the NET_RX_SOFTIRQ.

This performs TCP/IP processing and places the NVMeoF-TCP CMD PDU into

the NVMeoF-TCP target queue, enqueuing the target worker function into the work

queue.

5. (NVMeoF-TCP target to Block layer) The target worker function reads the CMD

PDU from the socket buffer, creates a block request and submits it to the block plug.

6. (Block layer to NVMe SSD) The block plug is flushed, sending the request to the

NVMe SSD.

7. (NVMe SSD to Block) When the NVMe SSD completes the request, it triggers an

interrupt that schedules a BLOCK SOFTIRQ.

8. (Block layer to NVMeoF-TCP target) The BLOCK SOFTIRQ queues the response

in the NVMeoF-TCP target queue and enqueues the target worker function into the

work queue.

9. (NVMeoF-TCP target to NIC) The target worker function dequeues the response,

processes it with TCP/IP, and transmits it directly to the NIC if there is no backlog.

The packet is then sent from the target to the initiator.

10. (NIC to NVMeoF-TCP initiator) Interrupts scheduler NET_RX_SOFTIRQ.

NET_RX_SOFTIRQ processes TCP/IP and schedules the initiator worker function.

11. (NVMeoF-TCP initiator to block) The initiator worker function schedules the BLOCK

SOFTIRQ.

12

2.3 NVMeoF-TCP

12. (Block to application) The BLOCK SOFTIRQ sends the response back to the appli-

cation.

13

2. BACKGROUND

14

3

Performance Characterization Setup

In this chapter, we specify the setup and configurations for the experiments and provide

the evaluation plan for the upcoming chapters.

3.1 Experiment Setup

We set up QEMU virtual machines (VMs) for the initiator and target on host machines

configured as specified in Table 3.1. The host machines for the initiator and target are

connected via a 100 Gbps Ethernet link. All the peripherals listed in Table 3.2 are passed

through to the corresponding QEMU VMs using VFIO. All peripherals, VM processes, and

memory are pinned to the same NUMA domain on the host machines to ensure optimal

performance. The network interface card (NIC) is connected to NUMA domain 0 on the

initiator’s host machine. Therefore, we use the numactl command to ensure that the

memory and processes of the initiator VM are also linked to NUMA domain 0. Similarly,

the NIC and SSDs are located in NUMA domain 1 on the target host machine, so we use

numactl to attach the target QEMU VM to that domain.

Component Initiator Target
Kernel Linux 6.8 Linux 6.8
Operating System Ubuntu 24.04 LTS Ubuntu 24.04 LTS
CPU Intel(R) Xeon(R) Silver

4210R CPU @ 2.40GHz
Intel(R) Xeon(R) Silver
4210R CPU @ 2.40GHz

Number of Core(s) 10 10
RAM 24 GB 24 GB
MTU 9000 bytes 9000 bytes

Table 3.1: System software configuration of initiator and target

15

3. PERFORMANCE CHARACTERIZATION SETUP

Component Initiator Target
NIC Mellanox ConnectX-5 Mellanox ConnectX-5
SSD - 2 x Western Digital SN540 SSDs

Table 3.2: Peripherals configuration of initiator and target

Regarding the peripherals’ performance, the local tail latency for random read operations

on the SSD is 83.5 microseconds, supporting up to 459 KIOPS. For the 100 Gbps link

between the initiator and target, we achieved a bandwidth of 97 Gbps using the TCP_BW

test with iperf3.

We used Fio version 3.37 for all our storage benchmark experiments. Unless stated

otherwise, the following were the common configurations across all experiments:

• Ramp-up time: 60 seconds

• Run time: 120 seconds

• Direct I/O: Enabled

• IO engine: io_uring (hipri = 1, registerfiles = 1)

• Workload: Random read (randread)

Each experiment in this chapter was run three times, and we report the mean values of

the metrics across runs to ensure better confidence in our observations.

Hypothesis: Impact of NET RX Interrupt Affinity and Block Completion
Polling on Initiator Performance

Interrupt affinity and completion polling play an important role in the performance of

NVMeoF-TCP at the initiator (15). These parameters directly affect how response pro-

cessing is managed, which occurs in two main steps:

1. TCP/IP processing happens in the NET_RX_SOFTIRQ part.

2. The worker function runs on the CPU core until the application(fio) gets the response.

Interrupt affinity refers to the CPU core that handles an interrupt from a device. Here,

we’re looking at the interrupt affinity for network receive (NET RX) interrupts from a net-

work card, which further dictates the corresponding NET_RX_SOFTIRQ core placement

(Part 1 in the response processing). Making both the NET_RX_SOFTIRQ processing

and the worker function (Part 2) run on the same core helps cache locality.

16

3.2 Application Modelling and Corresponding Performance Metrics

The worker function’s core placement depends on where the corresponding application

thread is running, while the core for NET RX depends on which receive (RX) queue the

network card places the TCP packets of the corresponding NVMeoF-TCP response. To

align the cores of the two parts, we can use Accelerated Receive Flow Steering (aRFS).

This feature allows the operating system to give the network card hints on which CPU

core to use based on where the application thread runs.

The next system configuration we are concerned with is application polling for block

completions. Polling alleviates the overhead associated with multiple context switches

during interrupt handling. We can enable polling for our experiment by setting the hipri

argument while the io_engine is set to io_uring in the fio job file.

Intuitively, These system configurations can interfere with each other. So, we experi-

mented to identify the interaction of these two configurations.

p99 latency(µs)/KIOPS With polling Without polling
With interrupt affinity 106.66/122.76 121.34/118.70
Without interrupt affinity 102.22/124.38 124.41/112.79

Table 3.3: Performance matrix for polling(Block layer) and interrupt affin-
ity(NET_RX_SOFTIRQ)

Based on the Table3.3, polling without interrupt affinity performs better than other

configurations. So, we choose to disable aRFS(no interrupt affinity) and enabled hipri=1

for completion polling.

3.2 Application Modelling and Corresponding Performance
Metrics

In this section, we will define different types of application models and the corresponding

performance metrics that will be used in the upcoming chapters to evaluate performance.

• L-app (Latency-sensitive applications): This type of application is represented

by the fio configuration: P1, QD1 (Queue Depth 1), and Block size 4KB. These

applications submit a single outstanding request and expect quick completion. The

performance metric used to evaluate L-app performance is p99 latency, which reflects

the 99th percentile of request completion times. Examples of latency-sensitive ap-

plications include online gaming platforms and real-time financial trading systems,

where low latency is crucial for user experience and decision-making.

17

3. PERFORMANCE CHARACTERIZATION SETUP

• T-app (Throughput-sensitive applications): The corresponding fio configura-

tion for this type is P1, Block size 4KB, with varying Queue Depths. These applica-

tions submit multiple concurrent requests and aim to complete as many as possible

in a given time. The performance metric for T-app is throughput, measured in IOPS.

Common examples of throughput-sensitive applications are large-scale database man-

agement systems and cloud storage services, which handle many requests simultane-

ously.

• B-app (Bandwidth-sensitive applications): This application is characterized by

the fio configuration: P1, varying block sizes and queue depths. These applications

require the reading and writing large volumes of data, and their performance is mea-

sured in terms of bandwidth, typically expressed in MB/s. Examples of bandwidth-

sensitive applications include video streaming platforms and big data analytics, where

transferring and processing large amounts of data is essential for performance.

18

4

Configuring NVMeoF-TCP for
Performance

In this chapter, we answer (RQ1) What are the performance implications of NVMeoF-

TCP polling configurations? We start by identifying all the configuration options avail-

able for NVMeoF-TCP and then focus on the ones that use polling. After selecting the

polling configurations, we evaluate their performance to see how they affect the system.

From this analysis, we choose the best-performing polling setup, which will be used for

further experiments to answer other research questions.

4.1 Identifying NVMeoF-TCP Configuration Knobs

NVMeoF-TCP offers configuration options through module parameters and per NQN

(Qualified Name) parameters, which the initiator specifies during connection initialization.

The module parameters apply to the entire module and are enforced across all connections

and remote devices, while the NQN parameters are specific to each remote device. The

module and NQN parameters include the following:

• Target idle polling (Target module parameter): Determines how long the

NVMeoF target worker function is requeued in the work queue without a new request

to process. This is referred to as idle polling time. The default is 0, meaning the

target worker function is not rescheduled if no additional requests or responses are

pending.

• Number of NVMeoF I/O queues (NQN parameter): Defaults to the number

of cores on the initiator.

19

4. CONFIGURING NVMEOF-TCP FOR PERFORMANCE

• Polling I/O queues (NQN parameter): This creates queue pairs with pollable

completion queues in the initiator. The default number of pollable queues is 0.

• Socket priority (Initiator and Target module parameter): Specifies the net-

work packet priority for all NVMeoF-TCP flows from that node.

• Type of service (NQN parameter): Similar to socket priority but is specified for

each NQN, applying to both the initiator and target node for all connections related

to that NQN.

4.2 Evaluating NVMeoF-TCP Polling Configuration Knobs
for Performance

From the listed parameters, we select those that use a polling mechanism. The chosen

parameters are:

1. Polling I/O queues

2. Target idle polling

These configurations are evaluated incrementally to observe their effects on performance.

Initiator completion polling using polling I/O queues

In the default configuration, the polling kthread calls the bio_poll function, which looks for

block I/O (bio) completion events. If pollable I/O queue pairs are enabled for NVMeoF-

TCP, the bio_poll function further invokes the nvme_tcp_poll function, which checks for

packet reception on the socket associated with the queue pair as shown in Fig4.1. Polling

the NVMeoF-TCP queues removes the need to execute the initiator worker function. In-

tuitively, this polling approach could enhance performance by eliminating context switches

associated with the initiator worker execution.

Configuration Throughput (KIOPS) p99 latency (µs)
Default configuration 114.22 127.14
Pollable I/O queues 130.73 115.20

Table 4.1: Throughput and tail latency for default and pollable I/O queues configurations

To evaluate the improved performance claim, we run an experiment comparing the per-

formance of completion polling with pollable I/O queues against the default configuration.

20

4.2 Evaluating NVMeoF-TCP Polling Configuration Knobs for
Performance

Figure 4.1: Different completion semantics for NVMeoF-TCP

Figure 4.2: Plot for p99 latency for default and pollable I/O queues configurations

The results are presented in Fig. 4.2 for p99 latency and Fig. 4.3 for throughput. The

following observations can be drawn from the results:

1. In terms of p99 latency, pollable I/O queues shows a 9.3% (11.94µs) improvement

compared to default configuration.

2. For maximum achieved IOPS from a single core, pollable I/O queues deliver a 14.4%

improvement over the default configuration.

21

4. CONFIGURING NVMEOF-TCP FOR PERFORMANCE

Figure 4.3: Plot for IOPS vs Queue depth for default and pollable I/O queues configurations

Figure 4.4: Plot for number of context switches vs Queue depth for default and pollable I/O
queues configuration

3. This performance improvement is attributed to fewer context switches, as shown in

Fig4.4, which depicts the number of context switches in the fio application over the

experiment duration. Polling occurs within the same context as the application.

Therefore, enabling polling I/O queues in NVMeoF-TCP leads to improved performance

in our setup.

Target idle polling

Next, we evaluate the performance of the idle target polling configuration. The target

worker function is triggered whenever an NVMeoF-TCP request or NVMe response is en-

22

4.2 Evaluating NVMeoF-TCP Polling Configuration Knobs for
Performance

queued into the corresponding NVMeoF-TCP target queue pair. However, there can be a

delay between the enqueuing of a request/response and the start of the target worker func-

tion’s execution. To mitigate this, NVMeoF-TCP offers an option to configure the target

worker function to poll the queue pairs for a specified period (idle_poll_period_usecs).

When this polling period is specified, the worker function continuously checks the queue

pairs for new requests or responses. If the queue is empty, the function requeues itself

in the work queue until the elapsed time since the last execution with a request/response

exceeds the configured polling period. This polling mechanism is expected to reduce the

latency between the enqueueing of an item into the queue pair and the execution of the

worker function.

To assess this, we need to evaluate two aspects: whether target polling improves per-

formance, and what the optimal idle polling duration is. The effectiveness of the polling

duration depends on the rate at which work is enqueued in the target queue pair, which is

influenced by the rate of request arrival and request completion from the storage medium.

Since these rates are system-specific, we will determine the polling duration that yields the

best p99 latency in our setup for use in further experiments.

Figure 4.5: Plot for p99 latency(y-axis) for different target polling period(x-axis).

The following observations were made from the experiment results:

1. Fig. 4.5 shows that target idle polling reduces tail latency by 7.9-10.6% (9.21-12.29

µs). We select 40 µs as the target idle polling duration for better performance in our

setup.

2. No improvement in throughput is observed for any polling duration. This is because,

as the number of concurrent requests increases, the influx of requests and responses

to the target queue also rises, keeping the worker function continuously active. As a

23

4. CONFIGURING NVMEOF-TCP FOR PERFORMANCE

result, target idle polling does not contribute to performance gains in the throughput

experiments since the worker function remains busy without the need for idle polling.

Thus, the finding from this section is that target idle polling improves tail latency.

4.3 Summary

In this chapter, we identified several configuration parameters and evaluated two configu-

rations significantly impacting performance. The following observations were made during

the evaluation:

• Pollable NVMeoF-TCP I/O queues: Improved p99 latency by 9.3% and increased

single-core throughput by 14.4%.

• Idle target polling: Improved p99 latency by 7.9-10.6% depending on the polling

duration but showed no improvement in IOPS.

Configuration Suggested value
Number of Polling I/O queues 10 queue pairs (Number of cores in the ini-

tiator)
Idle target polling 40µs

Table 4.2: NVMeoF-TCP configuration used for upcoming experiments in this thesis

Based on the findings, we optimized our system configuration(configuration details are

provided in Table4.2) for improved performance for the upcoming experiments addressing

RQ2 and RQ3 to ensure better performance.

24

5

Evaluating Performance Overhead of
NVMeoF-TCP over NVMe

In this chapter, we address (RQ2) What is the performance overhead of NVMeoF-

TCP compared to local NVMe?. We evaluate the performance of the L-app, T-app,

and B-app between NVMeoF-TCP and NVMe and quantify the performance overhead

introduced by NVMeoF-TCP compared to direct NVMe access. The evaluation is carried

out using the configuration settings identified from RQ1.

5.1 L-app Overhead Quantification

We begin by comparing the performance of L-app in NVMe and NVMeoF-TCP. Latency

in NVMeoF-TCP can be attributed to the NVMeoF-TCP software stack, network trans-

mission, and the storage medium, while in NVMe, it is influenced by the NVMe software

stack and the storage medium. To isolate the overhead introduced by the NVMeoF-TCP

software stack and network, we conduct two comparisons:

1. Software Overhead: We compare NVMe with NVMeoF-TCP on a localhost setup to

identify the overhead introduced by the NVMeoF-TCP software stack.

2. Network Overhead: We compare NVMeoF-TCP on localhost and NVMeoF-TCP over

100 Gbps network setup to quantify the overhead caused by network transmission.

During the experiment for NVMeoF-TCP localhost, we observed that enabling comple-

tion polling in fio negatively impacted performance, as the polling interfered with NVMeoF-

TCP’s target request processing, both of which occurred on the same core. As a result, we

temporarily disabled completion polling for the NVMeoF-TCP localhost experiment only.

25

5. EVALUATING PERFORMANCE OVERHEAD OF NVMEOF-TCP
OVER NVME

Figure 5.1: p99 latency plot of NVMe, NVMeoF-TCP(localhost) and NVMeoF-TCP(100
Gbps)

The results of the experiments are shown in Fig. 5.1, and the following observations can

be made:

1. NVMeoF-TCP on localhost has 7.4% (6.14 µs) higher 99th percentile latency com-

pared to NVMe.

2. NVMeoF-TCP over a 100 Gbps network shows a 19.6% (17.40 µs) increase in latency

compared to NVMeoF-TCP on localhost.

3. NVMeoF-TCP over a 100 Gbps network exhibits a 27.3% (22.53 µs) increase in

latency compared to NVMe.

These observations lead to the finding that in our setup, In NVMeoF-TCP over a 100

Gbps network, the network contributes more to the tail latency than the NVMeoF-TCP

software stack.

5.2 T-app Overhead Quantification

Next, we compare the T-app performance in NVMe and NVMeoF-TCP over 100 Gbps,

focusing on the maximum single-core throughput. To do this, we run a single fio process

with varying queue depths until the throughput saturates. Note: Completion polling has

been enabled. The experiment results are shown in Fig5.2.

The observations from the results are as follows:

1. For NVMe, a single core reaches saturation at a queue depth (QD) of 256, delivering

332.68 KIOPS.

26

5.3 B-app Overhead Quantification

Figure 5.2: Throughput plot for NVMe and NVMeoF-TCP

2. For NVMeoF-TCP, a single core saturates at a QD of 128, providing around 128.24

KIOPS.

These observations indicate that, in our setup, a single core in the local NVMe stack

provides 2.58 times the throughput of NVMeoF-TCP.

5.3 B-app Overhead Quantification

Figure 5.3: Bandwidth plot for NVMe and NVMeoF-TCP for different block sizes

Next, we compare the B-app performance in NVMe and NVMeoF-TCP. For this, we run

a single fio process with varying queue depths for different block sizes until the bandwidth

27

5. EVALUATING PERFORMANCE OVERHEAD OF NVMEOF-TCP
OVER NVME

saturates. The result of the experiment is shown in Fig5.3 (contains only max achieved

bandwidth for each block size). The observations from the plot are,

1. The performance gap between NVMe and NVMeoF-TCP is high at smaller block

sizes.

2. As the block size increases, the performance difference narrows. At 64k, both NVMe

and NVMeoF-TCP achieve similar bandwidth performance. This is because the SSD

device in the setup was saturated.

3. There are two unexplained scenarios: The bandwidth drop at 128KB block size,

where both NVMe and NVMeoF-TCP show a decline, is unclear. Also, the unex-

pectedly high bandwidth was observed with a 4KB block size in NVMe.

In our setup, both NVMe and NVMeoF-TCP reach the maximum bandwidth perfor-

mance of the SSD when using a single core at larger block sizes.

5.4 Summary

In this section, we compared the performance of different applications(L-app, T-app, and

B-app) in NVMe and NVMeoF-TCP and quantified the overhead of NVMeoF-TCP in our

setup.

• L-app: NVMeoF-TCP exhibits higher latency than NVMe due to the overhead intro-

duced by the software stack and network transmission. Specifically, NVMeoF-TCP

on localhost shows a 7.4% higher p99 latency compared to NVMe, and over a 100

Gbps network, the latency increases by 27.3%. The observation is that network

transmission contributes more to tail latency than the NVMeoF-TCP soft-

ware stack in our setup.

• T-app: When comparing single-core throughput in our setup, NVMe de-

livers 2.58 times the throughput of NVMeoF-TCP. NVMe saturates at a

queue depth of 256, achieving around 332.68 KIOPS, while NVMeoF-TCP reaches

saturation at a queue depth of 128, providing only 128.24 KIOPS.

• B-app: Both NVMe and NVMeoF-TCP achieve the maximum bandwidth

performance of the SSD when using a single core at larger block sizes in

our setup.

28

6

Evaluating Performance Interference
in NVMeoF-TCP

In this section, we address (RQ3) What is the performance interference with var-

ious loads on compute resources in the NVMeoF-TCP stack? We identify the

different compute resources within the NVMeoF-TCP stack and determine their saturation

points. After that, we outline the experimental design used to measure the interference for

each compute resource. Finally, we perform interference characterization by conducting

experiments for each resource.

6.1 Compute Resources and the Saturation Points in NVMeoF-
TCP

Resource Saturation point (KIOPS) Saturation configuration
Initiator core 128.24 P1.QD128
Target core 180.30 P2.QD128

Table 6.1: Saturation points of compute resources in the NVMeoF-TCP stack and the
corresponding fio configuration to obtain the saturation point.

In our setup, the compute resources in the NVMeoF-TCP stack include the initiator core

and target core. Based on the saturation points detailed in Table 6.1, we observed that

the initiator core reaches saturation before the target core in NVMeoF-TCP.

29

6. EVALUATING PERFORMANCE INTERFERENCE IN
NVMEOF-TCP

6.2 Experiment Design to Quantify Interference in NVMeoF-
TCP

To characterize interference for a resource, we make the foreground flow from the L-app

or T-app share the resource with a background flow under varying load levels. These

loads range from 10%, 20% of the resource’s saturation point up to the maximum load

(Max), representing the highest load the background flow can exert while still allowing the

foreground process to share that resource. For example, in the experiment of characterizing

latency interference of the initiator core, we make the L-app fio process share the initiator

core with the background fio process and note down the tail latency for the background

app’s various IOPS throttle limit of 25.64 KIOPS (0.20*128.24 KIOPS), 51.28 KIOPS

(0.40*128.24 KIOPS) so on till the throughput of the background process is no longer

increasing which we mark down as max load percentage of the background process with

L-app sharing the initiator resources.

The experiments aim to answer the following questions about each resource:

1. How does varying load on the resource affect interference on the L-app?

2. How does varying load on the resource affect interference on the T-app?

3. What is the maximum background load that can be applied while the L-app shares

the resource?

4. What is the maximum background load that can be applied while the T-app shares

the resource?

The results from these questions will help characterize the interference behaviour of the

resources.

Quantification of interference

For L-app, we quantify the interference using the formulae:

Latency Interference =
p99 Latency<concurrent load>

p99 Latency<isolated>

The above formulae specify the factor of increase in the p99 latency of the L-app under

load compared to the isolated situation. So, lower interference values for L-app are better,

indicating less latency degradation under load.

30

6.3 Interference Characterization of the Initiator

For T-app, we quantify the interference using the formulae:

Interference =
Metric<concurrent load>

Metric<isolated>

We call the interference metric of T-app as throughput sustained because the formula will

have the value of 1 if there is no interference and approaches 0 as interference increases.

So, in this case, the higher the "throughput sustained" value, the less interference there is

with the T-app.

Fixing the Queue depth of T-app

For the interference study, We fix the queue depth of the T-app to 128. This decision

is made to avoid conducting multiple interference studies for varying queue depths, as

QD-128 represents all T-app scenarios. Specifically, QD-128 is chosen because it is the

maximum queue depth at which a single fio process reaches saturation in the NVMeoF-

TCP environment.

Network and other interference

Though the network is excluded from the interference study, both the network and the pro-

cessors on the initiator and target are still shared between the foreground and background

flows in all experiments due to limitations in the setup. As a result, interference may be

present between the network and shared processors across the experiments. To account for

this, a specific experiment was conducted where the network and processors were the only

shared resources between the background and foreground flows, allowing for the isolation

and measurement of their impact on performance. In this test, the background load was

set to the saturation point of both the initiator and target cores to establish the maximum

possible interference from the network and processors for the following experiments. The

results indicated minimal interference, suggesting that the shared resources had a negligible

effect on the performance in these experiments.

6.3 Interference Characterization of the Initiator

We start by examining the interference characteristics of the initiator core. In this experi-

ment, we use the following configuration,

• 1 foreground Fio process (L-app/T-app) in core 0 of the initiator

• 1 background Fio process in core 0 of the initiator

31

6. EVALUATING PERFORMANCE INTERFERENCE IN
NVMEOF-TCP

• The foreground Fio process sends I/O requests to remote SSD1

• the background Fio process sends I/O requests to remote SSD2

• The TCP connection for queue pair in core 0 for remote SSD1, through which the

foreground Fio process sends I/O requests, is mapped to core 0 in the target.

• The TCP connection for queue pair in core 0 for remote SSD2, through which the

background Fio process sends I/O requests, is mapped to core 1 in the target.

The above setup ensures that the experiment measures interference explicitly caused by

sharing the initiator core. Further sanity check was also performed, which checks the

following invariants

• The Number of I/O requests completed by the foreground Fio process equals the

number of NVMe requests in the core 0 of the target.

• The Number of I/O requests completed by the foreground Fio process equals the

number of NVMe requests submitted to SSD1 in the target from any core.

Figure 6.1: Plot for latency interference (y-axis) for various background loads (x-axis) in the
initiator core. The higher the y-axis, the higher the latency interference.

The plots in Fig 6.1 illustrate the interference to the tail latency of the L-app under

various background loads. From the plot, the following observations can be made:

1. The latency interference remains consistently around 38x, regardless of the back-

ground load percentage. This high level of interference, irrespective of load variation,

may result from the polling by the Fio process.

32

6.4 Interference Characterization of the Target

2. The max achieved background flow load with an L-app is 40% of the saturation point

of the initiator.

Figure 6.2: Plot for throughput interference (y-axis) for various background loads (x-axis)
in the initiator core. The lower the y-axis, the higher the throughput interference.

The plots in Fig. 6.2 show the interference on the throughput of the T-app under various

background loads. From the plot, we can observe the following:

1. The throughput of T-app reduces to 49% irrespective of the background load. This

high level of interference, irrespective of load variation, may result from the polling

by the Fio process.

2. The maximum background load achieved with the T-app is 40%.

6.4 Interference Characterization of the Target

Next, we examine the interference characteristics of the target core. In this experiment,

we use the following configuration,

• 1 Foreground Fio process (L-app/T-app) in core 0 of the initiator

• 2 Background Fio processes in cores 1 and 2 of the initiator, respectively. We are

using two processes because they are required to saturate the target resource.

• The foreground Fio process sends I/O requests to remote SSD1

• the background Fio process sends I/O requests to remote SSD2

33

6. EVALUATING PERFORMANCE INTERFERENCE IN
NVMEOF-TCP

• The TCP connection for queue pair in core 0 for remote SSD1, through which the

foreground Fio process sends I/O requests, is mapped to core 0 in the target.

• The TCP connections for core 1 and 2 queue pairs for remote SSD2, through which

the background Fio processes send I/O requests, are mapped to core 0 in the target.

The above setup isolates and observes interference caused by sharing the target core.

Further sanity check was also performed, which checks the following invariants

• The Number of I/O requests completed by the foreground Fio process equals the

number of NVMe requests in the core 0 of the target for SSD1.

• The Number of NVMe requests submitted from other cores expect core 0 is 0 in the

target.

Figure 6.3: Plot for latency interference (y-axis) for various background loads (x-axis) in the
target core. The higher the y-axis, the higher the latency interference.

The plot in Fig6.3 shows the tail latency interference of the L-app for various background

loads. The following can be observed from the plot,

1. Interference increases as the load on the target core rises due to background flows.

Between 20% and 60% load, the interference increases linearly from 1.8x to 3.2x.

However, from 70% to 80% load, there is a significant jump to 6.8x interference.

The plot in Fig6.4 shows the throughput interference of the T-app for various background

loads. The following can be observed from the plot,

34

6.5 Summary

Figure 6.4: Plot for throughput interference (y-axis) for various background loads (x-axis)
in the target core. The lower the y-axis, the higher the throughput interference.

1. Interference increases as the background load on the target core rises. At a 10%

load on the target core, there is no noticeable impact on the T-app’s performance.

However, as the load increases to 20%-40%, T-app’s throughput decreases by 5%-

10%. At a 50% load, the throughput reduction reaches 25%, and at 60% load, T-app

experiences a significant 40% drop in throughput.

6.5 Summary

In this section, we quantified the interference of the initiator and target compute resources

in the NVMeoF-TCP stack. The analysis shows different patterns of performance interfer-

ence for initiator and target components when background loads change.

For the initiator, latency interference stays consistently high at around 38x, regardless

of the background load. T-app’s throughput on the initiator also drops by 49%, and this

reduction remains the same no matter how the background load changes.

For the target, interference increases as the target core load increases. Between 20% and

60% load, interference grows steadily from 1.8x to 3.2x. However, there is a sharp rise at

higher loads, jumping to 6.8x between 70% and 80%. In terms of throughput, there is no

significant effect at a 10% load, but it starts to drop by 5%-10% as the load increases to

20%-40%. At a 50% load, throughput falls by 25%, and at 60% load, it drops significantly

by 40%.

35

6. EVALUATING PERFORMANCE INTERFERENCE IN
NVMEOF-TCP

36

7

Discussion

7.1 Limitations of the Study

• No Evaluation of Write Performance: This study only focuses on read perfor-

mance, and we have not evaluated how write operations perform. Since write tasks

behave differently from reads regarding speed and resource use, this leaves a gap in

understanding how the system handles write-heavy workloads or mixed read-write

environments.

• Lack of Network Interference Study: We did not analyze network interference

in detail, even though the network is a shared resource. Without this, we might

miss out on how network congestion or traffic impacts the overall performance of

NVMeoF-TCP.

• No Analysis of Configuration Parameters Impact on Interference: We have

not explored how our specific configuration parameters (such as pollable I/O queues

and target polling) affect resource interference. This limits our understanding of

whether these configurations help mitigate or worsen interference under different

load conditions.

Addressing these limitations in future research would provide a more comprehensive

understanding of NVMeoF-TCP performance and interference characterization.

37

7. DISCUSSION

7.2 Related work

Performance Characterization

Khosravi et al.(16) conducted a detailed performance analysis of iSCSI, characterizing

the CPU and memory requirements for various I/O sizes and providing a breakdown of

the processing costs at different levels of the iSCSI stack. Their work offers insights into

the resource demands associated with iSCSI-based storage solutions. Kilimovic et al.(17)

focused on tuning remote access to Flash over iSCSI and evaluated its impact on workloads

sampled from real datacenter applications. Their analysis showed that while remote Flash

access via iSCSI leads to a 20% drop in throughput at the application level, disaggregation

helps to mitigate these overheads by enabling resource-efficient scale-out, making it possible

to balance the performance losses with enhanced scalability.

Guz et al.(18) conduct a comprehensive performance characterization of NVMeoF us-

ing RDMA as a transport protocol, comparing it with iSCSI and Direct-Attached Stor-

age (DAS). The study examines performance metrics such as latency and throughput,

highlighting how NVMeoF-RDMA provides superior performance over traditional storage

technologies like iSCSI. The authors also explore the impact of using SPDK (Storage Per-

formance Development Kit) on the NVMeoF-RDMA target module, showing how SPDK

optimizes I/O paths to further enhance performance. Similarly, Kashyap et al.(19) extend

this analysis by comparing the performance of different NVMeoF transport protocols using

SPDK on the target side.

Xu et al.(20) analyzed the performance of NVMeoF using both TCP and RDMA, with

and without target offloading. Their findings revealed that offloading reduced CPU uti-

lization by 38.7% and improved overall performance, underscoring the potential benefits

of offloading mechanisms in optimizing NVMeoF deployments.

Flash Storage Interference Characterization

Ren et al.(21) examine the performance overheads and interference effects introduced by

different Linux I/O schedulers in local NVMe-based storage, focusing on the Kyber sched-

uler. By analyzing Kyber’s configuration space, they offer recommendations on how to

minimize interference in storage systems. In another study, Doekemeijer et al.(22) focus

on Zoned Namespace (ZNS) devices, characterizing the interference between I/O opera-

tions and I/O management tasks. Their findings led to the development of the ConfZNS++

emulator, which improves the handling of I/O operations in the ConfZNS emulator(23).

38

7.2 Related work

Multiple Resources Scheduling

Gimbal(24) is a software storage switch that efficiently manages I/O traffic between Eth-

ernet ports and NVMe drives for co-located tenants. It implements a delay-based SSD

congestion control algorithm that helps estimate the cost of operations, allowing the sys-

tem to create virtual slots for I/O tasks dynamically. These virtual slots are then divided

among users, ensuring fair and efficient resource distribution. Ng et al.(25) introduce a

protocol called NVMe-over-Priority-Fabrics (NVMe-oPF), which supports multi-tenancy

and allows applications to specify whether to optimize for latency or throughput. On the

other hand, Gupta et al.(26) propose modifying congestion control mechanisms to priori-

tize specific I/O flows, allowing applications with low latency or high throughput storage

requirements to receive enhanced network support. RackBlox,(27) introduces a system

where flash storage devices are directly connected to network switches, which handle I/O

scheduling. This scheduling is based on both the priority of the task’s completion and the

state of the flash storage replicas.

39

7. DISCUSSION

40

8

Conclusion

In this thesis, we conducted a performance characterization of NVMeoF-TCP, analyzing

both its overhead compared to NVMe and the interference it causes in various resources.

We began by examining the available configuration options for NVMeoF-TCP and their ef-

fects on performance. Next, we quantified the overhead introduced by NVMeoF-TCP when

compared to direct NVMe access. Finally, we performed an interference characterization

for the initiator and target resources in NVMeoF-TCP environments.

In this section, we summarize the answers to the research questions presented at the

start of this thesis, and we also discuss potential areas for future research.

8.1 Research Question

(RQ1) What are the performance implications of NVMeoF-TCP polling
configurations?

In Chapter 4, we identified the polling configuration options of NVMeoF-TCP: Polling I/O

queues and Target idle polling. Our evaluation showed that enabling polling I/O queues

improves tail latency by 9% and increases single-core throughput by 14%. Similarly, en-

abling target idle polling reduced tail latency by 8-10%, depending on the polling duration.

These results indicate that enabling polling configurations can significantly enhance the

performance of NVMeoF-TCP.

(RQ2) What is the performance overhead of NVMeoF-TCP compared to
local NVMe?

In Chapter 5, we quantified the overhead of NVMeoF-TCP compared to NVMe. We found

that the NVMeoF-TCP software stack introduces a 7% performance overhead compared to

41

8. CONCLUSION

local NVMe, while NVMeoF-TCP over a 100 Gbps network increases this overhead to 28%.

In terms of throughput, NVMeoF-TCP achieves only 40% of the throughput that NVMe

can deliver from a single core. However, NVMe and NVMeoF-TCP saturate the SSD in

our setup at higher block sizes. These results state the need to account for additional

overheads when deploying NVMeoF-TCP, particularly in high-performance environments.

(RQ3) What is the performance interference with various loads on com-
pute resources in the NVMeoF-TCP stack?

In Chapter 6, we explored the interference characteristics of NVMeoF-TCP by analyzing

how different compute resources, such as the initiator core and target core, are impacted

under varying background loads. We found that the initiator core consistently showed high

latency interference (around 38x) and a 49% reduction in T-app throughput, unaffected

by load variation. In contrast, the target core’s interference increased steadily with back-

ground load, rising from 1.8x at 20% load to 3.2x at 60%, with a sharp jump to 6.8x at

80%. T-app throughput on the target dropped significantly at higher loads, with up to a

40% decrease at 60% load. These findings highlight the need for specific load management

strategies across different resources to minimize performance interference in NVMeoF-TCP

systems.

8.2 Guidelines

Based on the findings from the research questions (RQ1, RQ2, and RQ3), the following

guidelines can help improve performance and manage resources in NVMeoF-TCP environ-

ments:

Configuring for Better Performance

• Enable Pollable I/O Queues: Configuring pollable I/O queues can significantly

reduce latency and improve throughput.

• Adjust Target Idle Polling Duration: Configuring target idle polling can lead

to latency improvements. However, the optimal polling duration depends on the

incoming request rate.

42

8.3 Future Work

Account for Performance Overhead from Disaggregation

• Higher Latency and Lower Throughput: Compared to local NVMe, NVMeoF-

TCP introduces a 27.3% increase in latency and a reduction in single-core throughput

by 2.58 times. When deploying NVMeoF-TCP, plan for these overheads.

• Larger Block Size for Bandwidth-Sensitive Applications: Applications that

rely on high bandwidth in NVMeoF-TCP storage setups should use larger block

sizes to mitigate the performance effects of disaggregation. Larger block sizes help

maintain bandwidth levels similar to NVMe’s local storage.

Minimize Resource Interference

• Balance Load Distribution Across Initiator: The initiator experiences consis-

tent latency interference, regardless of background load. To avoid bottlenecks, dis-

tribute tasks and background processes across multiple cores or servers to alleviate

pressure on a single initiator.

• Monitor and Limit Background Loads on Target Cores: Interference in-

creases with higher background loads on target cores. To prevent significant drops

in performance, keep the load on target cores below 70% for L-apps and 50% for

T-apps.

8.3 Future Work

This study focused only on NVMeoF-TCP. Future research could examine NVMeoF-

RDMA to understand how it performs and handles interference in cloud environments

compared to NVMeoF-TCP.

Additionally, this study mainly examined interference in the initiator and target re-

sources. Future work should include other vital resources like the network and storage to

provide a more complete understanding of interference. This would give a more compre-

hensive picture of how interference affects performance in the NVMeoF-TCP stack.

Another area for future research is the development of a multi-resource scheduler. This

scheduler would help manage resources like CPU, memory, network, and storage more

efficiently, ensuring consistent Quality of Service (QoS) across all tenants by improving

resource allocation and reducing interference.

43

8. CONCLUSION

44

References

[1] Alexandru Iosup, Fernando Kuipers, Ana Lucia Varbanescu, Paola

Grosso, Animesh Trivedi, Jan Rellermeyer, Lin Wang, Alexandru Uta,

and Francesco Regazzoni. Future Computer Systems and Networking

Research in the Netherlands: A Manifesto, 2022. 1

[2] Hystax. Cloud Infrastructure: The Backbone of Modern Computing, 2023.

Accessed: 2024-10-09. 1

[3] Deloitte. Milliseconds Make Millions: Why Speed Matters in Financial

Services, 2021. Accessed: 2024-09-12. 1

[4] Isaac Odun-Ayo, Sanjay Misra, Olusola Abayomi-Alli, and Olasupo

Ajayi. Cloud Multi-Tenancy: Issues and Developments. In Companion Pro-

ceedings of The10th International Conference on Utility and Cloud Computing, UCC

’17 Companion, page 209–214, New York, NY, USA, 2017. Association for Computing

Machinery. 1

[5] Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean Hildebrand, and

Erez Zadok. On the performance variation in modern storage stacks. In

15th USENIX conference on file and storage technologies (FAST 17), pages 329–344,

2017. 1

[6] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter as

a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second

Edition. 2013. 1

[7] James Hamilton. Internet-scale service infrastructure efficiency. In Proceed-

ings of the 36th Annual International Symposium on Computer Architecture, ISCA

’09, page 232, New York, NY, USA, 2009. Association for Computing Machinery. 1

45

https://arxiv.org/abs/2206.03259
https://arxiv.org/abs/2206.03259
https://hystax.com/cloud-infrastructure-the-backbone-of-modern-computing/
https://www.deloitte.com/content/dam/Deloitte/ie/Documents/Consulting/Milliseconds_Make_Millions_report.pdf
https://www.deloitte.com/content/dam/Deloitte/ie/Documents/Consulting/Milliseconds_Make_Millions_report.pdf
https://doi-org.vu-nl.idm.oclc.org/10.1145/3147234.3148095
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
https://doi-org.vu-nl.idm.oclc.org/10.1145/1555754.1555756

REFERENCES

[8] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu

Shi, and Scott Shenker. Network support for resource disaggregation in

next-generation datacenters. In Proceedings of the Twelfth ACM Workshop on

Hot Topics in Networks, HotNets-XII, New York, NY, USA, 2013. Association for

Computing Machinery. 1

[9] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael

Stumm, and Ding Yuan. An analysis of performance evolution of Linux’s

core operations. In Proceedings of the 27th ACM Symposium on Operating Sys-

tems Principles, SOSP ’19, page 554–569, New York, NY, USA, 2019. Association for

Computing Machinery. 3

[10] Raj Jain. The art of computer systems performance analysis. john wiley & sons,

1990. 3

[11] Sonja Bezjak, April Clyburne-Sherin, Philipp Conzett, Pedro L Fernan-

des, Edit Görögh, Kerstin Helbig, Bianca Kramer, Ignasi Labastida,

Kyle Niemeyer, Fotis Psomopoulos, et al. The open science training

handbook. 2018. 3

[12] Lorrie Cranor, Kim Hazelwood, Daniel Lopresti, and Amanda Stent.

Conference Submission and Review Policies to Foster Responsible Com-

puting Research. arXiv preprint arXiv:2408.09678, 2024. 3

[13] Blesson Varghese and Rajkumar Buyya. Energy-efficiency and sustain-

ability in new generation cloud computing: A vision and directions for

integrated management of data centre resources and workloads. Future

Generation Computer Systems, 82:128–137, 2018. 4

[14] Keith Busch et al. NVMeCLI - NVMe Command Line Interface. https:

//github.com/linux-nvme/nvme-cli, 2016. Accessed: 2024-10-11. 9

[15] SPDK Project. SPDK NVMe-oF TCP (Target & Initiator) Performance

Report. Technical report, Storage Performance Development Kit (SPDK), 2021.

Accessed: 2024-10-20. 16

[16] H.M. Khosravi, Abhijeet Joglekar, and Ravi Iyer. Performance character-

ization of iSCSI processing in a server platform. In PCCC 2005. 24th IEEE In-

ternational Performance, Computing, and Communications Conference, 2005., pages

99–107, 2005. 38

46

https://doi-org.vu-nl.idm.oclc.org/10.1145/2535771.2535778
https://doi-org.vu-nl.idm.oclc.org/10.1145/2535771.2535778
https://doi-org.vu-nl.idm.oclc.org/10.1145/3341301.3359640
https://doi-org.vu-nl.idm.oclc.org/10.1145/3341301.3359640
https://github.com/linux-nvme/nvme-cli
https://github.com/linux-nvme/nvme-cli
https://ci.spdk.io/download/performance-reports/SPDK_tcp_perf_report_2107.pdf
https://ci.spdk.io/download/performance-reports/SPDK_tcp_perf_report_2107.pdf

REFERENCES

[17] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and San-

jeev Kumar. Flash storage disaggregation. In Proceedings of the Eleventh Eu-

ropean Conference on Computer Systems, EuroSys ’16, New York, NY, USA, 2016.

Association for Computing Machinery. 38

[18] Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Balakrishnan. Per-

formance characterization of nvme-over-fabrics storage disaggregation.

ACM Transactions on Storage (TOS), 14(4):1–18, 2018. 38

[19] Arjun Kashyap, Shashank Gugnani, and Xiaoyi Lu. Impact of commodity

networks on storage disaggregation with nvme-of. In Benchmarking, Measur-

ing, and Optimizing: Third BenchCouncil International Symposium, Bench 2020, Vir-

tual Event, November 15–16, 2020, Revised Selected Papers 3, pages 41–56. Springer,

2021. 38

[20] Jiexiong Xu, Yue Qiu, Yiquan Chen, Yijing Wang, Wenhai Lin, Yiquan

Lin, Shushu Zhao, Yuqi Liu, Ying Wang, and Wenzhi Chen. Performance

Characterization of SmartNIC NVMe-over-Fabrics Target Offloading. In

Proceedings of the 17th ACM International Systems and Storage Conference, SYSTOR

’24, page 14–24, New York, NY, USA, 2024. Association for Computing Machinery.

38

[21] Zebin Ren, Krijn Doekemeijer, Nick Tehrany, and Animesh Trivedi. BFQ,

Multiqueue-Deadline, or Kyber? Performance Characterization of Linux

Storage Schedulers in the NVMe Era. In Proceedings of the 15th ACM/SPEC

International Conference on Performance Engineering, ICPE ’24, page 154–165, New

York, NY, USA, 2024. Association for Computing Machinery. 38

[22] Krijn Doekemeijer, Dennis Maisenbacher, Zebin Ren, Nick Tehrany, Ma-

tias Bjørling, and Animesh Trivedi. Exploring I/O Management Perfor-

mance in ZNS with ConfZNS++. In Proceedings of the 17th ACM International

Systems and Storage Conference, SYSTOR ’24, page 162–177, New York, NY, USA,

2024. Association for Computing Machinery. 38

[23] Inho Song, Myounghoon Oh, Bryan Suk Joon Kim, Seehwan Yoo, Jae-

dong Lee, and Jongmoo Choi. ConfZNS: A Novel Emulator for Exploring

47

https://doi-org.vu-nl.idm.oclc.org/10.1145/2901318.2901337
https://doi-org.vu-nl.idm.oclc.org/10.1145/3688351.3689154
https://doi-org.vu-nl.idm.oclc.org/10.1145/3688351.3689154
https://doi.org/10.1145/3629526.3645053
https://doi.org/10.1145/3629526.3645053
https://doi.org/10.1145/3629526.3645053
https://doi.org/10.1145/3688351.3689160
https://doi.org/10.1145/3688351.3689160
https://doi.org/10.1145/3579370.3594772
https://doi.org/10.1145/3579370.3594772
https://doi.org/10.1145/3579370.3594772

REFERENCES

Design Space of ZNS SSDs. In Proceedings of the 16th ACM International Confer-

ence on Systems and Storage, SYSTOR ’23, page 71–82, New York, NY, USA, 2023.

Association for Computing Machinery. 38

[24] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew Wei,

In Hwan Doh, and Arvind Krishnamurthy. Gimbal: enabling multi-tenant

storage disaggregation on SmartNIC JBOFs. In Proceedings of the 2021 ACM

SIGCOMM 2021 Conference, SIGCOMM ’21, page 106–122, New York, NY, USA,

2021. Association for Computing Machinery. 39

[25] Darren Ng, Andrew Lin, Arjun Kashyap, Guanpeng Li, and Xiaoyi Lu.

NVMe-oPF: Designing Efficient Priority Schemes for NVMe-over-Fabrics

with Multi-Tenancy Support. In 2024 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 519–531, 2024. 39

[26] Jit Gupta, Krishna Kant, Amitangshu Pal, and Joyanta Biswas. Configur-

ing and Coordinating End-to-end QoS for Emerging Storage Infrastructure.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems,

9(1):1–32, 2024. 39

[27] Benjamin Reidys, Yuqi Xue, Daixuan Li, Bharat Sukhwani, Wen-Mei Hwu,

Deming Chen, Sameh Asaad, and Jian Huang. RackBlox: A Software-

Defined Rack-Scale Storage System with Network-Storage Co-Design. In

Proceedings of the 29th Symposium on Operating Systems Principles, pages 182–199,

2023. 39

48

https://doi.org/10.1145/3579370.3594772
https://doi.org/10.1145/3579370.3594772
https://doi.org/10.1145/3579370.3594772
https://doi.org/10.1145/3579370.3594772
https://doi-org.vu-nl.idm.oclc.org/10.1145/3452296.3472940
https://doi-org.vu-nl.idm.oclc.org/10.1145/3452296.3472940

9

Appendix

9.1 Artifact Description

9.1.1 Abstract

This artifact description describes how to set up the benchmarking environment and re-

produce the results as seen in the thesis.

9.1.2 Artifact Checklist

• Program: The benchmarking scripts are available at

https://github.com/bergstartup/NVMeoFTCP-Characterization.

• Publicly available?: The scripts are publicly available

• Code license: GPL-3.0 license

9.1.3 Description

How to access

All the scripts necessary to run benchmarks to obtain the graphs in this thesis can be

obtained from GitHub with:

$ git clone https://github.com/bergstartup/NVMeoFTCP-Characterization

Software Dependencies

The following software are needed to run the benchmarks and to make the plots:

• Fio-3.37

49

https://github.com/bergstartup/NVMeoFTCP-Characterization

9. APPENDIX

• bpftrace-0.20.2

• Python 3

Software and Hardware Configuration

All benchmarks run on top of Qemu 6.1.0 with KVM enabled

Hardware configuration host (Initiator and Target)

• 20-core 2.40GHz Intel(R) Xeon(R) Silver 4210R CPU with two sockets connected in

NUMA mode. Each socket has ten physical cores and one thread for each core.

• 252GB of DDR4 RAM

Hardware configuration VM (Initiator)

• 10-core 2.40GHz Intel(R) Xeon(R) Silver 4210R

• 24GB of DDR4 RAM

• Passthrough of Mellanox ConnectX-5 NIC

Hardware configuration VM (Target)

• 10-core 2.40GHz Intel(R) Xeon(R) Silver 4210R

• 24GB of DDR4 RAM

• Passthrough of Mellanox ConnectX-5 NIC

• Passthrough of 2X Western Digital SN540 SSD

The initiator and the target should have a 100Gbps link connected through the Mellanox

NIC. The QEMU VM process, memory and all peripherals should be pinned to the same

NUMA domain in the host, both the initiator and target. The Operating System used in

the VM is Ubuntu 24.04 with Linux Kernel 6.8.0.

Experiment workflow

Setup initialization

In target

50

9.1 Artifact Description

$ cd NVMeoFTCP-Characterization

$ cd ./scripts/setup

$./nvmeof_tcp_target_setup.sh $dev_path_0 0

$./nvmeof_tcp_target_setup.sh $dev_path_1 1

NVMeoF-TCP configuration experiments (RQ1)

Polling I/O queues

$ cd NVMeoFTCP-Characterization

$ cd ./scripts/benchmark/fio/performance

$./poll_npoll.sh

/* After execution of tests */

$ python3 crunching.py

Target Idle Polling

$ cd NVMeoFTCP-Characterization

$ cd ./scripts/benchmark/fio/performance

$./tpoll.sh

/* After execution of tests */

$ python3 crunching.py

NVMeoF-TCP overhead experiments (RQ2)

Latency overhead (In the target)

$ cd NVMeoFTCP-Characterization

$ cd ./scripts/benchmark/fio/performance

$./local_bench.sh

$./local_tcp.sh

Latency, Throughput and Bandwidth Overhead (In the initiator)

$ cd NVMeoFTCP-Characterization

$ cd ./scripts/benchmark/fio/performance

$./remote_bench.sh

$./copy_local.sh

$ python3 crunching.py

51

9. APPENDIX

NVMeoF-TCP interference experiments (RQ3)

For initiator interference

$ cd NVMeoFTCP-Characterization

$ cd ./scripts/benchmark/fio/qos

$./initiator.sh

$ python3 crunching.py

For target interference

$ cd NVMeoFTCP-Characterization

$ cd ./scripts/benchmark/fio/qos_ns

$./target.sh

$ python3 crunching.py

52

	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Questions and Methodology
	1.4 Thesis Contributions
	1.5 Societal Relevance
	1.6 Thesis Structure

	2 Background
	2.1 Disaggregated Storage
	2.1.1 File-based Disaggregation
	2.1.2 Block-based Disaggregation

	2.2 Non-Volatile Memory Express (NVMe)
	2.3 NVMeoF-TCP

	3 Performance Characterization Setup
	3.1 Experiment Setup
	3.2 Application Modelling and Corresponding Performance Metrics

	4 Configuring NVMeoF-TCP for Performance
	4.1 Identifying NVMeoF-TCP Configuration Knobs
	4.2 Evaluating NVMeoF-TCP Polling Configuration Knobs for Performance
	4.3 Summary

	5 Evaluating Performance Overhead of NVMeoF-TCP over NVMe
	5.1 L-app Overhead Quantification
	5.2 T-app Overhead Quantification
	5.3 B-app Overhead Quantification
	5.4 Summary

	6 Evaluating Performance Interference in NVMeoF-TCP
	6.1 Compute Resources and the Saturation Points in NVMeoF-TCP
	6.2 Experiment Design to Quantify Interference in NVMeoF-TCP
	6.3 Interference Characterization of the Initiator
	6.4 Interference Characterization of the Target
	6.5 Summary

	7 Discussion
	7.1 Limitations of the Study
	7.2 Related work

	8 Conclusion
	8.1 Research Question
	8.2 Guidelines
	8.3 Future Work

	References
	9 Appendix
	9.1 Artifact Description
	9.1.1 Abstract
	9.1.2 Artifact Checklist
	9.1.3 Description

