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Abstract

File systems are ubiquitous and fundamental to most computer system, playing

a crucial role in organizing and storing data efficiently. They are essential for

a multitude of applications, particularly in the domain of High-Performance

Computing (HPC) and Data Intensive Scalable Computing (DISC). As the

volume of files in these systems grows, efficient metadata handling becomes

increasingly important for overall system performance. However, research has

highlighted challenges with metadata management in conventional file systems

such ext4, btrfs, or xfs when tasked with metadata-intensive tasks (1, 2, 3).

In addition to these challenges, academic research has underlined the potential

of small-data storage systems, particularly key-value stores, for balancing read

and write operations effectively. This research focuses on hybrid key-value store

file systems, which aim to enhance metadata performance. We address two

primary research questions in this work: What design options are available for

hybrid key-value store file systems, and what are their respective advantages

and disadvantages? Furthermore, how can such a system be designed and

implemented effectively?

To address these research questions we first conduct a comprehensive literature

review of highly-regarded academic papers, examining various design strate-

gies. We then detail our own design approach for our system vkFS, as well as

explaining its implementation intricacies. Finally, we evaluate the performance

of vkFS using the benchmarking tool Filebench. Our literature review identifies

several notable design options, including horizontal scaling, a flattened direc-

tory tree, and the decoupling of metadata from file data. These strategies offer

distinct benefits, such as improved lookup performance, reduced serialization

overhead, and efficient scaling in distributed environments. Nevertheless, they

also present challenges, such as handling large value fields, complex renam-

ing operations, and management intricacies associated with horizontal scaling.

Despite our system not achieving the expected performance improvements, our



evaluation provides insights into potential aspects affecting the performance.

Though not verified by means of quantitative data, we propose hypotheses to

explain these outcomes.

The artifact can be accessed at: https://github.com/Vincent881909/vkfs
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Introduction

1.1 Context

File systems are integral of nearly all computer systems, serving as the primary mecha-

nism for data storage and retrieval. They are ubiquitous, found in personal mobile devices,

personal computers, embedded systems, and large-scale data centres amongst others illus-

trating why they are a critical component in the world of modern storage. This ubiquity

necessitates that file systems must operate efficiently and accurately across a wide range

of scales and use cases. For instance, personal Apple phones utilise the Apple File Sys-

tem (APFS)(4), Linux computers commonly employ the Extended File System version

4 (Ext4)(5), and large distributed data-intensive applications often rely on the Google

File System (GFS)(6). Additionally, open-source file systems are regularly introduced

(7),(8),(9),(10) (11) reflecting the ongoing advancements and contributions in this domain

- and with continuous development in technology more can be expected in this field (12).

Therefore, this underlines the importance of rigorous research, experimentation, and eval-

uation in the field of file systems.

Moreover, file systems are fundamental to operations across various industries. Busi-

nesses, governments, and society depend on file systems to run their services and manage

their data. This reliance makes file systems a critical component in many sectors, driving

the need for ongoing research and development. Research in file systems not only advances

the technology but also educates and prepares future developers and designers in this field,

ensuring that digital infrastructure remains robust and future-proof. Therefore, it is essen-

tial to address the current challenges in file systems, explore potential solutions, evaluate

existing technologies, and generate innovative ideas for the future.
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1. INTRODUCTION

Conventional file systems have undergone a wide array of improvements and changes to

increase performance and mitigate system crashes or data corruption (13). Due to the vast

range of file system applications a diverse array of design decisions were made to optimise

for specific use cases. For example, xfs was developed to handle large files, numerous

files, expansive directories, and to deliver very high-performance I/O operations while

the Hadoop Distributed File System (HDFS) was designed for large-scale data storage and

processing across multiple machines (14, 15). Additionally, as observed in the Linux source

code, numerous file systems are supported in a Linux environment to cater to various user

needs, including specific use cases, workloads, performance characteristics, and reliability

requirements.

The above highlights a fundamental observation - no single file system can meet all

use cases. This fact in combination with ongoing technological advancements drives the

continuous development of improved file systems and innovative design architectures.

1.2 Problem Statement

One specific responsibility of file systems is to handle metadata operations. These oper-

ations include but are not limited to creating directories, deleting files, altering file per-

missions, or retrieving file attributes such as size, ownership, or access and modification

timestamps. Metadata operations can comprise up to 80% of the overall file system tasks

(16). With this in mind, it is therefore not surprising that the absence of metadata opti-

misation techniques can create performance bottlenecks, especially in environments with

large file numbers such as in High Performance Computing (HPC) or the data intensive

scalable computing (DISC) world (2). Furthermore, scalable systems will soon need to

handle billions of small files, challenging both large and local file systems (17).

Another use case for file systems is to access many small files, which imposes the chal-

lenge of many random disk I/Os (18). Research has shown that the median file size on

personal computers is only 4KiB (19), which means that most file system operations are

performed on small files and their metadata. Conventional file systems such as Ext4 man-

aging magnetic disks have realized the importance of sequential allocation as well as large

data transfer sizes (1). However, modern workloads dominated by metadata lookup and

small files expose an inefficiency which occurs as a result of many random I/Os on disk

even in advanced file systems such as Ext4, XFS, and Btrfs (1). These inefficiencies will

be further explored in Section 2.2.
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1.3 Research Questions

This leads to the opportunity to research and analyse file system designs that achieve

performance improvements in the above cases. This will be the primary objective of this

work.

1.3 Research Questions

In this work, our aim is to improve the performance of file systems by improving the

handling of metadata workloads. Specifically, we focus on solutions that employ a hybrid

file system leveraging key-value stores. To address these challenges, we identify two key

research questions.

RQ1 What designs can be employed to improve metadata handling within a hybrid

model of a key-value store and file system, and what advantages or limitations do they

present?

Our first research question directs our attention to the design aspects within the scope

of hybrid key-value store file systems. It is imperative to research and analyse existing

architectures to provide an answer to RQ1. Striving for innovation and contribution in

the domain of storage design requires a deep understanding of current architectures and

their advantages and drawbacks. This study allows us to combine the design decisions of

other authors and use this knowledge to introduce our own design, which further aids in

the process of answering RQ1.

Our second research question shifts the focus to implementing such a design and per-

forming an evaluation using benchmarking tools. Thus, to further validate our findings

from RQ1 we introduce our second research question. RQ2 How to design and implement

a Hybrid Key-Value Store File System that optimises for metadata intensive workloads?

By exploring RQ2 we aim to gather insights that will help us to draw a conclusion about

how to solve the problem at hand.

1.4 Research Methodology

To provide a meaningful answer to both research questions that address the aforementioned

problem statement we employ several different research methodologies.

First, to answer RQ1 we conduct a comprehensive literature review to analyse existing

designs of hybrid key-value store file systems. In this section we touch on different design

decision that were made and discuss its advantages as well as their potential drawbacks. By

analysing different designs we aim to understand the complexities involved in developing
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1. INTRODUCTION

an efficient file system and identify the limitations of specific design choices. With this

knowledge we aim to gain a deeper understanding of the problem and its potential solutions

and utilise this to design our own solution to the problem. Once the design is finalised, we

proceed to implement our solution. This implementation will serve to address RQ2 and

there are several reasons for providing a functional file system implementation as part of

our research methodology.

First, it forces us to deeply understand the intricacies involved in designing a versatile

file system, thereby aiding in the thorough investigation of RQ1. Second, it provides us

with a tangible tool to evaluate the chosen design by means of benchmark tools and to

make direct comparisons to existing file systems. Lastly, this rigorous approach enables us

to form a meaningful conclusion regarding RQ1.

1.5 Thesis Contributions

With this work we are confident to provide several contributions to the industry and

community.

1.5.1 Conceptual

This work provides a comprehensive overview and analysis of currently existing hybrid file

systems. It also offers an examination of the limitations inherent to the design of hybrid

file systems. This allows for future research to build on these insights, driving innovation

and improvements in hybrid file system architectures.

1.5.2 Artifact

This research is accompanied by a fully functional implementation utilising a design that

has been carefully selected after thorough research in the domain of file systems. Further-

more, the implementation serves as a source of inspiration for other related file systems

and is accessible and adaptable through open-source distribution.

1.5.3 Experimental

We provide a thorough evaluation of the chosen design by means of benchmark tools. By

providing the exact workloads used for this evaluation we allow future research to make

direct comparisons further driving the development of modern storage solutions. We also

offer guidance for reproduceability for validation purposes.
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1.6 Plagiarism Declaration

1.5.4 Societal

The complete document serves as a starting point for any future exploration in the domain

of storage research. Different contributions of this paper such as conceptual, technical,

or experimental, aid as valuable resources for both academic researchers and industry

professionals looking to advance the field of hybrid file systems.

1.6 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.
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2

Background on Conventional File
Systems

Before delving into the design decisions of hybrid file systems that leverage key-value

stores, we start by reviewing traditional file systems, without a hybrid design, specifically

Ext4, XFS, and Btrfs. These file systems are well-established and often used as a direct

comparison when developing new file system designs (1). This review lays the foundation

for understanding the design of hybrid file systems and provides context on how they

differ, while also highlighting the current inefficiencies in handling metadata operations.

Additionally, it will emphasize key design principles of the mentioned conventional file

systems, setting the stage for further analysis in chapter 3. Moreover, these file systems

will serve as a direct comparison point for our implementation, which will be explored

in Section 6. Understanding their design and functionality is essential for a meaningful

evaluation of our implementation against these established standards.

2.1 Extended File System Version 4

The Extended File System Version 4 is the newest file system of the extended file system

family and is considered as the default Linux File System since its introduction in 2006

(20). The transition from Ext3 to Ext4 mainly addressed scalability, performance, and

reliability factors and has been integrated into Linux since version 2.6.1. Ext4 divides the

drive space into a large number of blocks representing the basic unit that accommodates

the further structures of the file system. These blocks are then grouped into block groups.

The information held for each block group is in the descriptor table. Two other blocks are

located near the start of each block group and represent the block usage bitmap and inode
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2. BACKGROUND ON CONVENTIONAL FILE SYSTEMS

usage bitmap. These bitmaps indicate which blocks and inodes are currently in use and are

an essential part of the extended file system family. Another block is represented by the

superblock. This block is responsible for storing file state information such as the number

of free and used blocks of the entire file system. The primary copy of the superblock is

stored at an offset of 1024 bytes from the start of the device but copies are present in

block group 1 and powers of 3, 5, and 7. The inode table represents another block within

a block group and holds a linear array of inodes allocated for its block group. Lastly, each

block group contains a data block. Figure 2.1 depicts a simplified overview of a block

group. It is important to note that not every block group follows this precise pattern

for example the superblock is not present in every block group. Additionally, since Ext3

this file system family uses a journal to protect from metadata inconsistencies in case of

a system crash. The journal itself consists of more individual blocks taking up an entire

block group. However, a more detailed description on this unit is out of scope for this

work.

Figure 2.1: Ext4 File System Organisation divided into Block Groups

2.1.1 Locating Metadata in Ext4

Since the primary objective of this work revolves around enhancing metadata handling, it

is essential to examine the specifics of the metadata stored within the Ext4 file system. As

mentioned earlier, the inode table is a linear array of inodes holding metadata of all entries

in the current block group. The inode is defined as a struct ext4_inode in its source

code and holds all the metadata for a file. For readability reasons Figure 2.2 shows only

the first eleven fields of this structure. During operations such as stat, chown, or chmod

this metadata is accessed.

While analysing the entire struct may be out of scope for this work let’s examine some

essential fields such as i_mode, i_links_count, i_blocks_count, and i_flags.

The i_mode field is a bitmask and serves two primary functions. First, it defines the

file type most commonly Directory and Regular File. Second, this bitmask specifies the

file’s access permissions - an important part of any secure file system. This unit utilizes a

bitmask to identify file permissions and file types.

8



2.1 Extended File System Version 4

Figure 2.2: Ext4 Inode Struct

The i_links_count refers to the number of hard links which allows for a inode number

to be present more than once as well as different names. These entries, however, all

point to the same inode and thus the same data. The i_blocks_count field indicates

how many blocks have been allocated for the contents of the file. The i_flags field is a

another bitmask combining various flags that indicate special attributes of a file, such as

requirements for secure deletion, immutability, synchronous writes, encryption, and other

metadata properties.

In order to locate the metadata of a file the file system follows a systematic approach.

The determination of the block group is necessary to find the necessary inode table which

holds the inode and its metadata of our requested file.

The s_inodes_per_group field in the superblock structure specifies the number of inodes

defined per group. Given that inode allocation starts at 1 (inode 0 does not exist), the

following formulas can be used:

1.

block group =
inode − 1

s_inodes_per_group

2.

local inode index = (inode − 1) mod s_inodes_per_group

3.

offset = index ∗ s_inode_size

9



2. BACKGROUND ON CONVENTIONAL FILE SYSTEMS

Figure 2.3: Struct to hold Information about a Directory Entry

For instance, to find the inode of “file.txt” located at path “/home/foo/file.txt”, the

process begins by iterating from the root directory, which has the known inode number

0. By applying formula 1. and 2. we get the local inode index 0 at block group 0. Since

the index is 0 formula 3 does not need to be used since the offset will be 0. Since “/” is a

directory we use the inode to allocate the directory entries in the corresponding data block

and locate the entry with name “foo”. In the ext4 source code, a directory entry in the

data block is defined as a struct called struct ext4_dir_entry_2 that is stored as a byte

array.

Figure 2.3 shows the outline of this data structure. The filename can be read from the

directory entry and compared to the entry name we are seeking. If it matches we retrieve

the inode value and begin traversing for the next entry. If it does not match, we continue

to the next directory entry. Once we have retrieved the inode value, we can utilise the

above formulas again to locate the directory entry of “foo”. Similar to the root entry, foo

is a directory and its inode points to a data block containing all its directory entries. Ext4

also supports Hash Tree Directories to improve the performance of looking up a specific

entry. Once the correct directory entry is located we retrieve the inode number of the file

and use the formulas above to find the block group and its local inode index. Once this

has been finalised we can access the files metadata.

This example serves as a demonstration to why lookup operations can be expensive in

terms of calculations required to find the specified entry. In addition, deeply nested entries

in a file tree aggravate the cost of a lookup operation. Moreover, as the number of files

grow in a file system the need for optimisation techniques becomes evident. Key-value

stores can alleviate these associated lookup costs which we discuss in detail in chapter 3.

10



2.2 XFS

2.2 XFS

XFS is a high-performing file system optimized for scalability and parallel throughput

developed by SGI in October 1993 for IRIX. XFS can handle large files, many inodes, and

large directories. Parallel access is optimized by dividing the storage medium into semi-

autonomous allocation groups. Delayed and extend-based allocations are used to improve

data contiguity and I/O Performance (21).

Similar to how Ext4 divides the disk space into block groups, xfs file ystem is internally

divided into multiple equally sized areas called allocation groups (AGs). Every instance of

an AG can be seen as an independent unit that is able to manage its own inodes, space

usage, and other secondary metadata. This allows xfs to use multiple AGs to perform

most operations in parallel without performance loss, even with multiple concurrent access

patterns. Multiple b-trees are used per allocation group to manage bookkeeping data such

as the locations of free blocks, allocated inodes, and free inodes.

2.3 Btrfs

Btrfs is another open source Linux files system that has been continously developed since

its introduction in 2007 by organisations such as Red Hat, Intel, or Oracle. Key features

included cyclic redundancy checks, for all metadata and data to achieve data integrity and

security, efficient writable snapshots, and multi device support. In fact, once the objectives

of btrfs is to work for a wide variety of workloads and to maintain performance as time

passes. While many other storage systems are designed to optimize for specific narrow use

cases, btrfs is intended to work well on system of different scales ranging from smartphones

to enterprise servers. This leads to several challenges such as scalabilty, data integrity, and

disk diversity.

Btrfs divides the disk layout into a forest of b-trees. Disk blocks are managed in extends,

while checksums are used for integrity, and reference counting for space reclamation. The

performance of a btrfs is directly influenced by the availability of long contiguous extends

which becomes difficult to maintain as the system ages due to fragmentation. Because of

snapshots, disk extents can be pointed to by multiple file system volumes which in turn

makes defragmentation a real challenge. First, the extents can only be moved after all

source pointers are updates. Second, file contiguity is preferred for all snapshots (22).
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Exploring Hybrid File Systems: A
Comparative Literature Review

In this chapter, we aim to conduct a comprehensive review of existing solutions for meta-

data management. By providing this review, we hope to deepen the understanding of

designing a hybrid key-value store file system to optimize metadata handling and the chal-

lenges it entails. Additionally, we aim to achieve a better understanding of why existing

solutions can introduce drawbacks in their design.

This work shifts the focus to a particular subset of file systems: hybrid file systems

that utilize the performance benefits of key-value stores. This class of scalable, small-data

storage systems emphasizes (NoSQL) interfaces and large in-memory caches. Key-value

stores deploy different data structures to store data, each achieving a specific balance

regarding the fundamental trade-offs between read, update, and memory amplification

(23). Recent research has recognized key-value stores as an efficient way to store data,

making them a promising technique for file system metadata storage.

In this work, we focus on file systems that use key-value stores to store metadata to

achieve performance gains in metadata-intensive tasks. We review existing solutions, out-

lining their key design decisions and discussing the trade-offs associated with these de-

cisions. We do this by examining three case studies in depth: TableFS, IndexFS, and

LocoFS. Finally, we provide a short summary of our findings in the last section of this

chapter.
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3. EXPLORING HYBRID FILE SYSTEMS: A COMPARATIVE
LITERATURE REVIEW

3.1 Methodology

In order to conduct this survey, we collected relevant academic papers through various

approaches. First, we examined the most cited paper in this domain, TableFS, and consid-

ered the papers cited by its authors. This provided us with a solid list of papers relevant

to our problem statement. Additionally, since the TableFS paper is highly regarded, we

examined other publications from the same set of authors and discovered IndexFS, a con-

tinuation of TableFS that tackles the same problem with different design choices. Here, we

looked at all the papers referenced by IndexFS to expand our literature base for research.

Lastly, we utilized Google Scholar to browse all publications that cited either IndexFS or

TableFS, further increasing our collection of related papers.

3.2 TableFS

3.2.1 Introduction

TableFS is a hybrid key-value store file system utilising the LevelDB key-value store to

store metadata and files smaller than a pre-defined threshold while storing larger files in

the underlying file system. The authors underline the rise of data-store systems called key-

value stores, LevelDB in particular. LevelDB is a fast key-value store written at Google

mapping keys to values represented as arbitrary byte arrays (24). The primary objective

of TableFS is to improve performance for workloads dominated by metadata operations

and small files. The authors of this work published their paper "TABLEFS: Enhancing

Metadata Efficiency in the Local File System", in 2013 at the USENIX Annual Technical

Conference (USENIX ATC ’13) (1). The motivation for this work came from the fact that

scaling for metadata and small files has not seen the same kind of development as for high

bandwidth and large file transfers. Thus, this work aims to tackle this problem in the form

of an implementation followed by an evaluation of their design, making direct comparisons

to established file systems using metadata and data-intensive workloads.

In the following section we aim to provide details on the components of TableFS’s design

prior to presenting a overview of its overarching architecture. TableFS uses FUSE, a

userspace file system framework to implement TableFS. We provide a short review of this

framework discussing its advantages and why it fits in this context. We continue by delving

into an analysis of the underlying data structure of LevelDB, an Log Structured Merge

Tree (LSM-tree) exploring how it facilitates fast lookups while ensuring quick writes and

14



3.2 TableFS

Figure 3.1: FUSE high-level architecture

updates. Lastly, we touch on the table schema employed to store metadata and small files

in the key-value store.

3.2.2 FUSE

Most file systems offer a standardized interface for applications to read, write, and up-

date data. While mico-kernels implement file systems in user space, most file systems are

part of monolithic kernels (25). By operating at the kernel level, implementations sidestep

the expensive message-passing overheads found in micro-kernels and user-space daemons.

However, developing file systems in the kernel is challenging as bugs can crash whole sys-

tems. Thus, file systems developed at userspace level allows developers to easily prototype

new stackable file systems adding specialized functionality to the common file system in-

terface. Therefore, deciding whether to develop a file system in user space or at the kernel

level involves balancing the ease of development against the performance inefficiencies in-

troduced by user-space implementations. FUSE or file system in user space is the most

popular user-space file system framework and consists of a kernel and a user-level daemon

part. The kernel component is implemented as a Linux kernel module that registers a

FUSE file system driver with Linux’s Virtual File System (VFS). This FUSE driver works

as a bridge for different types of file systems, each run by its own user-level program. A

new block device is also registered by the kernel module named “/dev/fuse” from which

daemons can read FUSE requests, processes them, and write their response back to the

block device. Figure 3.1 depicts the high level architecture of FUSE.
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When the application performs an operation the request gets directed to the VFS which

adds this request to the queue at the FUSE Driver. At this point of time the application

process is in a waiting state. Once the operations has been added to the FUSE queue

the FUSE user-level daemon picks up the operation from the block device and processes

it using custom implementations of the FUSE library operations. Once processed, the

result is written back to the block device “/dev/fuse” at the kernel. FUSE Kernel Driver

then marks the process as finalised and wakes up the original application process. If an

application performs a read request for a file whose contents are cached by the kernel the

enqueuing process is omitted and the result is returned using the cache instead completely

bypassing communication with the user-level FUSE daemon (25). This illustrates the

overhead produced from using FUSE due to the message passing between modules.

3.2.3 LevelDB and its LSM Tree

TableFS uses the persistent key-value store LevelDB to store metadata as well as well as

files below 4KiB. To understand why this particular key-value store is a good fit we must

examine its design. A key-value store must define basic operations such as put and get

to insert or retrieve data. Other operations are optional and include delete to remove a

certain entry or scan to retrieves a range of key-value pairs. To store data in a key-value

store several data structures can be utilised. LevelDB uses a Log Structured Merge Tree

(LSM-tree) to store data in memory as well as on disk. An LSM-tree consists of different

components where data can be considered to be carried on from one component to the

next one where each subsequent component is larger than the previous one. To illustrate

how data is stored in an LSM-tree we provide Figure 3.2 based on a figure by Lu et al.

(26).

If the client triggers a put operation it is first written to an in-memory table (Memtable)

and optionally to a WAL (Write Ahead Log). This can be seen in Figure 3.2 as step

1 and 2. All changes to LevelDB are first written to the mutable memtable residing in

memory. The WAL resides on persistent storage and allows to restore any lost changes

after shutdown. All operations are also appended to the WAL so that in case of system

failure all data in the memtable can be recovered which is necessary to restore the database

to its original state. Once the memtable fills up or certain conditions (such as time passed)

are met the mutable memtable as well as the WAL will be marked as dirty and the mutable

memtable will be made immutable. This implies that the immutable memtable can only

be read at this point and not altered as it is prepared to being stored on persistent storage.

To achieve this, the immutable memtable is converted into a Sorted String Table (SST).
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Figure 3.2: LSM-tree Design of LevelDB

This structure holds sorted key-value pairs. The SST is then appended to the first level of

the tree also known as L0. This can be seen as step 4 in Figure 3.2.

Once the top level of the tree reaches a pre-defined size some of the SSTables from the

top level must move to the next level of the tree - a process known as compaction depict

in the final step of Figure 3.2. The key difference between L0 and L1 is that L1 only

contains unique key ranges while L0 may still hold overlapping key ranges. To achieve

this property merge sort is applied during the compaction process. The newly formed

non-overlapping SSTables are appended to L1 while the original SSTables used for this

compaction process are removed. This idea continues to deeper levels of the tree where

each level is smaller than the next level. The depth of this tree is configurable (27). The

details of compaction are relevant since compaction operations are inherently resource-

intensive and improper tuning of the LSM-tree can lead to frequent compactions, resulting

in many costly operations. This can lead to degrading the performance of the file system.

Moreover, during a lookup operation we must traverse all components at the worst case

ranging from the mutable memtable all the way to the last level LN. However, since LSM-

trees always append data we can safely return the first entry that matches our key in this

traversal as it is guaranteed to be the most up to date entry of the key we are interested

in.
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Figure 3.3: Table Scheme of TableFS

3.2.4 LevelDB Table Schema

Now that we have covered the essentials of how the underlying data structure (LSM-tree) of

LevelDB functions we can shift the focus to more fine-grained design choices, the LevelDB

Table Schema. This includes how the key pointing to the value is composed and what exact

data the value field holds. The key is composed of the entries parent directory 64-bit inode

number and the final component of its path (filename). The entries in the LSM-tree are

ordered by the variable-length key. The value contains the metadata or inode attributes

as seen in Figure 2.2. If the corresponding data does not exceed a predefined threshold T

the data is appended to the inode attributes and stored inside the LSM-tree. The authors

of TableFS determined this threshold to be 4KiB. This scheme can be seen in Figure 3.3

and has been adapted from the original TableFS paper (1).

3.2.5 High Level Overview

The authors of TableFS saw opportunity for performance improvement with regard to

scaling metadata intensive workloads and decided on several design choices to approach

this improvement as listed in this section. In this section, we present a short review of how

these individual components work together to form the overall architecture of their file

system. Figure 3.4 depicts the above-mentioned components and shows how they work

together to form a fully functional file system. Similar to Figure 3.1, this figure divides

the architecture into two distinct areas: user space and kernel space. In the user space,

the Benchmark Application Process, shown in red, initiates an operation targeting the file
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Figure 3.4: High Level Overview of TableFS Architecture

system and sends this request to the virtual file system (VFS). While this process is in

a waiting state, the VFS writes the request to the FUSE Kernel Module at "/dev/fuse,"

where it is subsequently processed by the Fuse library. TableFS then defines this operation

and uses its customized file system logic to decide whether the operation needs to be

handled by LevelDB or the Large File Store. As mentioned previously, LevelDB holds all

metadata and small inline data. The Large File Store refers to all data that exceed the

threshold for storing this data as an inline file. Thus, if data is requested to be written or

read and exceeds a predefined threshold, the Large File Store performs a system call back

into the kernel to perform the requested operation. In this design, the authors of TableFS

have chosen ext4 as the underlying local file system to store large objects.

The figure also illustrates an arrow between the Local File System and LevelDB, which

is due to the nature of the LSM-tree data structure. In the design of TableFS this is

ext4. As discussed in the previous section, once the in-memory memtables reach a certain

size or specific conditions are met, or any write to the WAL, their contents are flushed

to disk, requiring kernel access. Once either the Large File Store or LevelDB finishes its

operations, it will return to the FUSE library, which writes the results to the Fuse Driver

in the kernel. The benchmark process, which awaits these results, is reactivated and the

results are delivered to the application.

3.2.6 Analysis of Advantages and Drawbacks

In the preceding section, we provided a comprehensive review of the design implemented

by TableFS. Here, we aim to briefly analyze the benefits and limitations of this design.

The design entails storing metadata, file names, and inline data as the value field for a

given file. This can lead to value fields reaching sizes up to the maximum file name length

plus the size of the inode and 4KiB of inline data. A drawback is that key-value stores
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can experience performance degradation as the value field size increases (3). Additionally,

the (de)serialization process can become costly. During this process, the value for a key is

fetched from the key-value store and stored in memory. Most operations will only modify

a specific field of the inode, such as access or modification time. In this case, only a few

bytes are altered, but the entire value field must be written back to the key-value store

(3). With smaller value fields, this overhead could be kept at a minimum.

The use of an LSM-tree enables TableFS to attain high write performance due to the

data buffer provided by the memory table (1). For instance, this design permits for quick

bulk insertions without the need to immediately write all new entries to disk. However,

this can also result in data loss during failure scenarios such as a system crash. To mitigate

this, a well-tuned WAL is essential, along with mechanisms to recover lost data, adding

further complexity to the design. Another drawback is that the performance of TableFS

depends on the tuning of the key-value store in use, specifically LevelDB in this case.

Improper initialization of LevelDB settings can lead to system slowdowns. However, this

can be seen as an advantage since careful tuning allows developers to optimize the system

for specific access patterns, albeit adding additional complexity (28).

One significant drawback of the current TableFS implementation is the overhead intro-

duced by FUSE. As mentioned in the FUSE section, developing in user space results in

a storm of messages between modules. Consequently, it is difficult to derive meaningful

insights about TableFS’s overall performance. Nonetheless, the authors sought to reduce

this overhead by creating a TableFS library version, which runs all benchmarks within the

application, thus bypassing nearly all kernel calls (1, 25).

Lastly, one more disadvantage stems from utilizing a single LSM-tree as the chosen data

structure for metadata storage. As the file system tree expands, the underlying LSM-

tree also increases in size. Consequently, lookup operations become more expensive. In

contrast, as discussed in the background section, the lookup operation and its complexity

in ext4 are not dependent on the size of the file system tree (3).

3.3 IndexFS

3.3.1 Introduction

The authors Kai Ren, Qing Zheng, Swapnil Patil, and Harth Gibson from Carnegie Mellon

University introduced their paper "IndexFS: Scaling File System Metadata Performance

with Stateless Caching and Bulk Insertion" in 2014 and addresses the issue of metadata

scalability. In their paper, they authors claim that distributed file systems such as PVFS,
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Lustree, or HDFS focus on fast and parallel access to large files, while metadata scalability

often lacks performance optimization techniques. Their prototype implementation named

IndexFS attempts to tackle this issue by using a middleware design that can be integrated

on top of existing file systems, providing a flexible and adaptable solution for metadata

management.

The IndexFS architecture is table-based, allowing partitioning of the file system names-

pace. This namespace partitioning is performed on a per-directory basis, preserving disk

locality as small directories stay on a single server, whereas larger directories are partitioned

and distributed across multiple servers. Similarly to TableFS, IndexFS stores metadata in

a log-structured manner, minimising disk seeks and improving I/O efficiency. The paper

introduces two client-side caching techniques: bulk namespace insertion and stateless con-

sistent metadata caching. Bulk namespace insertion optimizes for workloads that create

many entries, while stateless consistent metadata caching helps mitigating hot spots in the

system, reducing the load on metadata servers. In this section, we will conduct an in-depth

review of this architecture followed by a discussion about the advantages and shortcomings

of this design (2).

3.3.2 IndexFS Client

The IndexFS Client is a subcomponent of the whole design and is responsible for directing

file system operations to the appropriate destination. IndexFS deploys a FUSE user-

level file system to implement the logic behind their hybrid design. This means that

the operations performed by the IndexFS client are directed to the FUSE user-level file

system, which decides whether the operation is of type metadata or a data request. This

distinction allows to direct data request to the underlying clustered file system making

use of parallel I/O bandwidth. If the operation is classified as metadata, the IndexFS

client directs this operation to the metadata indexing module sending the requests to the

appropriate IndexFS server. Metadata requests can also consist of data requests if the read

or write size does not exceed a predefined threshold of 64KiB. If a file in the underlying

file system undergoes changes such as access time, size, or permissions, the IndexFS server

will capture those changes on file close and apply the necessary changes on the metadata

server. IndexFS clients make use of caching mechanisms to allow fast access to frequently

requested metadata such as directory entries or directory server mappings. More details

of this caching technique are discussed later in this design section.
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3.3.3 IndexFS Server

Each individual IndexFS server is responsible for a non-overlapping subset of the file system

metadata. The architecture is layered and consists of multiple components such as the

Metadata cache, LevelDB key-value store, WAL, and SSTables. Similarly to TableFS an

IndexFS server stores metadata and small files on the underlying file system using a LSM-

tree employed by LevelDB. When data is written, it first resides in memory in a memory

table before being flushed to disk in the form of a SSTable. The details of this mechanism

are already discussed in the Design section of TableFS. The metadata of the file system

is distributed among multiple IndexFS servers, each responsible for owning and managing

a subset of the entire file systems metadata. The distribution occurs at the granularity

of a subset of a directories entries. When the number of entries in a directory exceeds

a threshold, IndexFS incrementally partitions its entries and metadata across multiple

IndexFS servers. The underlying cluster file system is responsible for replication and

encoding the LSM-tree’s SSTable files and WALs.

3.3.4 Dynamic Namespace Partitioning

Index deploys a fine-level dynamic namespace partitioning to distribute both directories

and directory entries across all IndexFS servers. The authors highlight that while many

solutions partition the file system namespace based on a collection of directories that form

a subtree, their design works at the directory subset granularity. This means that the

file system is partitioned into directories and stored across multiple IndexFS servers if the

directory has fewer than 128 entries. The advantage of this is that it preserves locality,

and thus allowing for efficient reading of directory entries. The initial server assignment is

executed by adapting the "power of two choices" load-balancing technique. This approach

assigns a directory by choosing two random servers and selecting the one with fewer stored

directory entries. This reduces the variance in the number of directory entries stored on

the metadata servers.

When a single directory grows past a threshold of 128 entries, IndexFS makes use of the

GIGA+ binary splitting technique. This technique hashes an individual directory entry to

uniformly map the entire hash-range, which is then range-partitioned. Once the directory

exceeds the 128 entry threshold, GIGA+ splits the hash-range in half and assigns one

half to another IndexFS server. If the directory continues to grow, the hash-space can be

further split to distribute the entries across multiple IndexFS servers. This idea continues

until all servers have a partition of the directory. IndexFS clients cache partition-to-server
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Figure 3.5: Distribution of file system directory tree among IndexFS servers

mappings to locate the entries of distributed directories. These mappings are cached at

inconsistent rates to avoid cache consistency traffic while stale mappings are corrected by

any server inappropriately accessed.

Figure 2.5 shows how a simple file tree and how it could be partitioned in a IndexFS

environment. The hot spot indicated in red refers to frequently accessed paths like the

root directory for example. Using the load balancing techniques mentioned above, IndexFS

attempts to balance file and directories across all servers aiming for balanced and low

variance distribution. In order to mitigate the hot spots IndexFS deploys a stateless

directory caching mechanism.

3.3.5 Stateless Directory Caching

To support POSIX file I/O semantics many metadata operations are needed for parent di-

rectories resulting in a large amount of remote procedure calls (RPCs). Individual servers

on a cluster use RPC protocol to communicate with each other. This introduces a messag-

ing overhead for each message sent, and thus the number of messages should be minimized.

GIGA+ uses a cache to map server entries for directories reducing the number of messages

required to locate the correct IndexFS server holding the requested data. However, this

approach could also result in stale mappings when a directory is partitioned or newly cre-

ated. The overhead for this scenario is small though, since the server that was wrongly

addressed can correct some or all of the clients cache. This eliminates a storm of cache

updates or invalidation messages that occur in large-scale systems with consistent caching.

Nevertheless, once the correct IndexFS server has been identified there is still a need
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for RPCs to test existence and permission checking. The authors of IndexFS highlight

that exactly this access pattern is not well balanced across multiple servers, as directories

further up in the tree are accessed far more frequently than directories at the bottom of a

file tree. This scenario is shown in Figure 2.5 and is indicated as a hot spot. To mitigate

this, the authors implemented a lease for a given pathname offered to a client, causing any

modification to that pathname to be delayed until the longest lease has expired. If a client

requests to modify a pathname, it has to wait until the longest lease on that pathname has

expired. Moreover, any requests for a lease on this pathname are blocked until the modifi-

cations have been completed. This is especially useful to mitigate a storm of invalidation

messages in case a client attempts to write changes to a file that is currently being read

by another client. For this to work, IndexFS assumes that the clocks on all machines in

the cluster are synchronized. Finally, instead of assigning fix-sized lease duration, IndexFS

adapts the duration of each lease based on two deciding factors. First, entries higher in

the directory tree get a longer lease, since they are more likely to be access frequently than

entries located towards the bottom of a file tree. Second, IndexFS monitors how often each

directory is read compared to its write requests. Directories that are read often but rarely

modified get longer leases.

3.3.6 Metadata Table Schema

Similar to TableFS, IndexFS stores metadata in LSM-tree. The mechanisms of this ap-

proach are covered in section 2.2.2.2. The table schema used for IndexFS is also almost

identical with the small difference that inline data can be as large as 64KiB as opposed to

4KiB in TableFS.

3.3.7 Column-Style Table For Faster Insertions

The authors of IndexFS have identified that compaction of two levels of the LSM-tree is a

resource intensive operation. Additionally, as the LSM-tree grows in size, lookup operations

become more costly. For these reasons, IndexFS deploys a second LSM-tree table schema,

called column-style. This table improves the throughput of insertion, modification, and

single-entry lookup. With this much smaller table, IndexFS can disable compaction of

the full metadata table. The column-style table only stores the file name, permissions,

and a pointer to the most recent corresponding record in the full metadata table. This

table is still sorted based on the same key. Due to its smaller size, its ability to cache is

better compared to the full metadata table. Additionally, reduced size also implies far less
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Figure 3.6: IndexFS architecture acting as middleware on top of an existing clustered file
system

frequent compaction. The metadata it holds is sufficient to satisfy lookup operations and

operations involving reading the contents of a directory. In the case the column-style table

cannot satisfy the requested operation, it can utilize the stored pointer to access the full

metadata table to retrieve the required metadata. In this scenario, only one additional

disk read is required. The authors claim that this is still more efficient than a search on

the large metadata table, especially on large LSM-trees.

3.3.8 Overall Architecture

Now that each individual component in the IndexFS is reviewed, we can provide an abstract

overview of the entire system. This is depict in Figure 2.6.

Once an IndexFS client makes a request for a file operation, the request is categorized

either as a metadata or data operation. Data operations traverse the blue data path

and are directed to the underlying distributed file system. However, metadata operations

are directed along the red line to the appropriate IndexFS server. The server utilizes the

caching methods discussed above to retrieve metadata or make insertions into the metadata

table using LevelDB. New entries are appended to the WAL and eventually written to an

SSTable and flushed to the underlying clustered file system.

3.3.9 Analysis of Advantages and Drawbacks

IndexFS directly addresses some of the shortcomings of the TableFS design by partition-

ing the metadata store into dual components, significantly reducing the frequency of com-

paction operations. This architectural change mitigates latency variability in lookup op-

erations, which is a noted issue in the TableFS approach. Furthermore, the adoption of a
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Column-Style Table in IndexFS enhances cache performance by reducing the size of stored

entries (1, 2).

Despite these advancements, the IndexFS design presents multiple drawbacks inherent to

its distributed architecture. The concurrent operation of multiple IndexFS servers necessi-

tates sophisticated data recovery mechanisms to maintain system integrity in the event of

server failures. Typically, these mechanisms involve maintaining replicas of server states

to enable seamless recovery (29). The intricate details of these mechanisms, however, are

beyond the scope of this discussion.

Another significant challenge is that cache misses may force clients to interact with mul-

tiple servers to retrieve file information, introducing additional latency. Properly balancing

these trade-offs is crucial for optimizing performance (2).

Moreover, the horizontal scalability of metadata servers, while offering potential for

improved parallel access, introduces complexity in load balancing. The authors propose

the "power of two choices" technique for load balancing, wherein two servers are randomly

selected, and the server with fewer entries is chosen for metadata storage. Although this

method aims to distribute load evenly, it can, in the worst case, lead to one server becoming

disproportionately loaded, thus utilizing available resources inefficiently (2).

Scaling to hundreds of IndexFS servers also compounds management complexities. In

scenarios where a directory grows significantly, it may lead to a situation where all servers

hold entries for that directory. Consequently, a client would need to communicate with

each server, resulting in high latencies due to increased messaging and networking demands

(3).

In summary, while IndexFS introduces some improvements over TableFS, particularly

in reducing compaction frequency and enhancing cache performance, it also presents sig-

nificant challenges in terms of data recovery, load balancing, and management of large

directories primarily inherent to its distributed environment.

3.4 LocoFS

3.4.1 Introduction

The final case study discussed in this paper is derived from the 2017 publication “LocoFS: A

Loosely-Coupled Metadata Service for Distributed File Systems”. The authors emphasize

that data centers are transitioning from Petabyte-scale storage to Exabyte-scale storage,

leading to scalability challenges for metadata services. They criticize the solution pro-

posed by IndexFS, which involves deploying hundreds of IndexFS servers, as it leads to
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management complexity and guarantee issues. They argue that most solutions only use 1

to 4 metadata servers, thereby avoiding these complexities. Moreover, they also emphasize

the appropriateness of key-value stores for metadata storage due to their straightforward

interface and excellent scalability. However, because of the directory tree semantics, there

is a performance gap between key-value stores and file system metadata. For example, the

authors state that IndexFS, which uses LevelDB as a metadata store, only achieves 1.7%

of LevelDB’s full performance. Moreover, the authors critizise that the performance of

key-value stores like LevelDB and Kyoto Cabinet decreases with larger value sizes because

handling bigger chunks of data takes more time during serialization and deserialization. In

systems like IndexFS, where all metadata for a file is stored in a single value, any small

change requires rewriting the entire value, leading to unnecessary overhead and reduced

efficiency.

To address these issues, the authors developed LocoFS. The primary objective of LocoFS

is to reduce dependencies among file system metadata, ensuring that essential file system

operations engage with only a few metadata servers during their lifecycle. They aim

to accomplish this by implementing a flattened directory tree structure to separate file

metadata from directory metadata. Additionally, they further divide the file metadata into

two components: Access Metadata and Content Metadata, to enhance the performance of

the key-value store in use (3)

In the following section, we provide an in-depth review of the design of LocoFS followed

by an analysis of its advantages and drawbacks.

3.4.2 Separation of File and Directory Metadata in LocoFS

LocoFS separates file and directory metadata to minimize the traversal path during lookup

operations and to decrease latency. LocoFS employs a single Directory Metadata Server

(DMS). The decision to use only one DMS is based on two factors. Firstly, the flattened

directory structure, discussed later in this section, supports a large number of directories

(approximately 108 for a DMS with 32GB memory). Secondly, a single DMS simplifies

the Access Control List (ACL) verification process. During this process, permissions are

verified to ensure data security. A DMS stores directory metadata in key-value pairs, where

the full path name is used as the key and the metadata is stored in the value field. Kyto

Cabinet is chosen as the key-value store in this design.

To manage file metadata, LocoFS employs several File Metadata Servers (FMS). It uti-

lizes a consistent hashing method to allocate the file metadata among various servers. Con-

sistent hashing is a strategy designed to distribute data uniformly across servers, thereby
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reducing the need for data reallocation when servers are added or removed. To generate a

key, a universally unique identifier (UUID) is combined with the file’s name. The UUID

originates from the file’s parent directory. Similarly to the DMS, an FMS uses Kyoto

Cabinet for storing key-value pairs.

3.4.3 Flattened Directory Tree

As mentioned in the introduction, the authors of LocoFS underline performance issues

that occur in traditional file systems due to the complex dependencies between directory

tree metadata and file metadata. This results in the fact that solutions that implement

a hybrid key-value-store file system do not effectively exploit the advantages inherent to

key-value stores. One of the advantages is that data are independently stored and accessed

in key-value stores. While certain file systems achieve benefits by storing metadata in a

key-value format, the dependencies within directory tree metadata still hinder file systems

from fully leveraging the advantages of the key-value approach.

The authors address this in LocoFS by using a method called the Flattened Directory

Tree to simplify the way metadata is organized. The primary objective is to reduce the

complex links between directory and file information, arranging them in a way such that

each component is independent of each other. Figure 3.7 shows how this mechanism

flattens a directory tree.

Traditionally, directories store their directory entries in their corresponding data blocks

that hold information about each entry. Such directory entry is shown in Figure 2.4.

LocoFS avoids storing directory entries within the directory data blocks, opting instead to

restructure this format in a backward way.

In the flattened directory tree, directory entries, depicted as a dir entry in Figure 3.7,

are separated from the directory metadata. The crosses in red in Figure 3.7 represent the

point of this decoupling mechanism. As a result, directories are stored with their metadata

on DMS, files are stored with their metadata on FMS, while directory entries are stored

on DMS if they belong to a subdirectory, and on the FMS if they represent a file in a

directory.

These directory entries are stored using key-value pairs, where the key is composed using

the hash value of the directory UUID. The corresponding value is the concatenation of all

directory entries that are also stored on the same server. This means that a directory

entry stored on a file server holds all file entries of a directory that are also present on the

same server. Similarly, on the DMS a directory entry key-value pair holds concatenated

directory entries consisting only of subdirectories.
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For example, the figure above shows directory 2 and 5 in the flattened directory tree.

These are directory entries from directory 1 and to be stored on the DMS. Here, the key

will be the UUID of directory 1. Similarly, the green entries represent files, so the directory

entries stored separately holds the UUID of the parent directory, and the value consists of

a normal directory entry field as shown earlier in Figure 2.3. These entries point to data

blocks indicated in purple.

Figure 3.7: Flattened Directory Tree Mechanism in LocoFS

3.4.4 Client Directory Metadata Cache

LocoFS deploys a cache mechanism to store the metadata of directories. The objective of

this is to reduce latency and improve scalability. The cache works on the client side and

is especially useful for operations such as create, remove, and open since the metadata of

the parent directory is required for these operations.

When a client creates a file within a directory, LocoFS stores the directory’s inode from

the DMS to the client. As a result, if another file is created in the same directory, the meta-

data of the parent directory can be retrieved locally. Additionally, during path traversal

operations, LocoFS caches the inodes of directories along the path. This approach reduces

latency and favors scalability. Similarly to IndexFS, LocoFS uses a lease mechanism, which

allows the client to cache metadata for a default duration of 30 seconds.

3.4.5 Decoupled File Metadata

The authors of LocoFS highlight that the performance of key-value stores significantly

drops as the size of the value field increases. Consequently, they suggest a different design

approach to minimize the size of the value field. Moreover, modifying a single field in the

inode structure necessitates rewriting the entire value field back to the key-value store,

causing additional overhead. During this process, the value field must first be deserialized
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Figure 3.8: Key-Value Pairs in LocoFS and File System Operations and their Access Pattern

before it can be accessed. This procedure can reduce efficiency if the value field size

grows. To address these overheads, LocoFS employs a decoupled file metadata mechanism

that divides the metadata into two categories: Access and Content Fields. The access

metadata section includes the fields atime, mode, uid, and gid. These fields define the

access permissions of the files. The content metadata section includes the fields mtime,

atime, block size, and file size. Each part is stored as one value and different file operations

access different metadata values. Figure 3.8 lists the different key-value pair stored across

the whole system and which operations need access which pair. A cross in the table

indicates that the corresponding operation needs to access or modify the corresponding

metadata. It also displays the different key-value pairs in the previous section and which

value they hold.

3.4.6 Overall Architecture

Now that we have covered all the essential components of the LocoFS design, we can provide

an overview of the entire system. This is depicted in Figure 3.9. Most notably in this

design are the two different types of metadata servers, one for file metadata and the other

for directories. In addition, the FMS is further divided using a Metadata interface which

distinguishes operations between Access and Content Metadata. The figure also illustrates
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Figure 3.9: Overall Architecture of LocoFS

how different operations are redirected to different locations where they are optimized to

be executed. This concludes the design section of LocoFS.

3.4.7 Analysis of Advantages and Drawbacks

LocoFS introduces a sophisticated approach to metadata management with both notable

advantages and some drawbacks.

One drawback is related to rename operations. These operations can become complex

because the flattened directory structure of the system requires meticulous metadata han-

dling, which can lead to performance inefficiencies. This occurs because directory entries

use their full path as the key. If a directory is renamed, all entries containing the old

directory name in their path need to be updated, causing significant overhead. However,

the percentage of rename operations in real-world applications is generally low (3).

The design decision to decouple file metadata into access and content metadata is effec-

tive, creating small value fields that allow the key-value store to perform well. However,

some operations, such as “getattr” or “remove”, need to access both access and content

metadata, requiring two database queries. Specifically, “getattr” could cause contention as

it is one of the most frequently used file operations in real-world applications (3, 25).

LocoFS uses a 30-second lease to cache entries on the client side. Although this improves

lookup operations, it can also lead to stale data, which is undesirable (3).

Lastly, by reorganizing the traditional hierarchical directory structure into a flattened

format, LocoFS reduces the complexity of metadata operations. This design minimizes
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Figure 3.10: Summary of Key Advantages and Drawbacks for our three Case Studies, Ta-
blesFS, IndexFS, and LocoFS

dependencies between directory and file metadata, enabling more independent and efficient

handling (3).

In summary, despite some issues such as stale cache entries and intricate rename pro-

cesses, LocoFS’s novel method of handling metadata and its scalable framework make it

ideal for high-performance computing settings. These environments can leverage this effi-

ciency and simplified operational complexity when managing metadata-heavy tasks. This

architecture delivers smart solutions in the domain of hybrid key-value-store file systems,

laying a solid foundation for any practical application that demands high throughput and

minimal latency in metadata operations.

3.5 Summary

In this chapter, we explored three different file system implementations that utilize key-

value stores to store metadata in order to achieve performance gains with regard to meta-

data management. Our review has shown that many design options exist such as deploying

multiple metadata servers, segregating metadata into smaller subsets, or flattening the file
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system tree. For each design decision we analysed what the benefit is according to the

authors. Subsequently, we listed some key advantages and drawbacks of the overall archi-

tecture. chapter 3 summarises our findings.

Our analysis indicates that hybrid key-value store file systems present multiple design

choices to tackle metadata management challenges. Each method has its own set of benefits

and limitations. These designs emphasize the trade-offs among complexity, performance,

and scalability. Selecting a design for a key-value store hybrid file system should be based

on the specific needs of the application, highlighting the difficulty in creating a file system

that fulfils all requirements. In addressing our research question RQ1, we determine that

the existing design choices for hybrid key-value store file systems each provide unique

benefits for efficient metadata handling. Nonetheless, these choices also introduce inherent

complexities, whether in managing distributed systems, optimizing key-value stores, or

dealing with the costs associated with (de)serialization of value fields. Therefore, it is

difficult to identify the most suitable design choice.
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System Design of vkFS

In this section we present the design of vkFS and deploys a hybrid file system storing

metadata in a key-value store while using the underlying file system to store larger files.

In this section we aim to provide a high level overview of the system and then gradually

diving into more detailed design decisions.

4.1 vkFS Design Requirements

Prior to presenting our design we want to highlight the design requirements we set ourselves.

Given the problem at hand we set the following Design Requirements (DR):

• DR1: Optimize Metadata Handling

The main objective of the system should be to optimize the system for metadata-

intensive tasks

• DR2: Utilize a Key-Value Store

The design should fit into the realm of hybrid key-value store file systems. Therefore,

the design needs to make use of a key-value store.

• DR3: Exploit Underlying File System

The design should make use of very high-performance I/O operations of established

file systems to store large file data.

4.2 Overview of vkFS System Architecture

This section provides a high-level overview of our file system design. Figure 4.1 depicts

all the essential components of our design.
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Figure 4.1: vkFS Sytem Architecture

In this figure, we can observe arrows with three different colors. The green arrow indi-

cates a bidirectional communication between the Application, in this case the Filebench

Benchmark, the Fuse Driver, and vkFS. The arrow is bidirectional, since vkFS will return

the appropriate result and writes it back to the FUSE Driver (covered in subsection 3.2.2)

before its result is returned to the waiting process via the Virtual File System (VFS). Simi-

larly, the blue arrow also indicates bidirectional communication. If vkFS receives a request

to read or write from or to a file that exceeds the inline data threshold of 4KiB, the system

performs the appropriate system call via the VFS to access the underlying file system ext4.

This addresses DR3. Its response will cycle through the blue arrow followed by the green

arrow back to the application process. Finally, the red arrows handle all metadata and

requests for small files. vkFS makes the appropriate request to RocksDB to retrieve, put,

or delete an entry that contains the metadata or inline file data. This addresses DR2. If

the requested data is not in in-memory table, the system has to pass through the kernel

to access the underlying storage hardware and read the contents from the LSM-tree. Its

contents are then returned to the file system and a response can be formed for the waiting

application process. The design as a whole addresses DR1.
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4.3 Inode Allocation

Inode allocation plays an intrinsic part in any file system as it provides every entry with an

inode number, which is the primary information to retrieve the entry. vkFS uses a single

allocation mechanism to handle all inodes in the file tree starting at the root directory

with special inode number 1. When a request is made to create a new file or directory, a

new inode number is required. vkFS uses a simple mechanism that increments the current

inode number after every creation of a file or directory. Additionally, it recycles inodes

that belonged to entries that were requested to be deleted. vkFS allows for 232−1 inodes

to exist simultaneously.

4.4 vkFS Key-Value Pairs

In vkFS all metadata is stored in RocksDB, a persistent key-value store. RocksDB uses

an LSM-tree as the underlying data structure to store key-value pairs. The details of this

data structure are already covered in section subsection 3.2.3. The inherent design of an

LSM-tree allows for fast updates and insertion. This write optimized performance becomes

especially useful when inserting many new directories or files into the file system tree or

when making small changes on metadata during modification operations such as “utimens”,

“chmod”, or “chown”.

In a manner akin to LocoFS, we have chosen to separate dependencies between directory

tree metadata and file metadata. Consequently, vkFS records one entry for each file and

directory in the metadata store. The insertion key is composed of the inode number of the

specific file. The corresponding value varies for files and directories. For a file entry in the

metadata store, the value comprises five elements: a flag indicating that the value pertains

to a file, the length of the file name, a flag indicating whether the data is stored in the

underlying file system or as inline data in the metadata store, the inode itself, and the file

name. Additionally, similar to TableFS, vkFS also stores small files in the metadata store

by appending the data to the value field of a file entry. The threshold for this is 4KiB,

meaning that file data below this threshold will be stored alongside the metadata, whereas

larger files will be stored in the underlying ext4 file system.

The corresponding value field for directories holds values similar to those of files. The

value of directories consists of a flag indicating that the value belongs to a directory, the

length of the directory name, the inode, and the name of the directory. Additionally, the

inode number of each entry in the directory is appended to the value field. The layout
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Figure 4.2: vkFS Key-Value Pairs for Files and Directories

of both key-value pairs is shown in Figure 4.2. Note that the lengths of the individual

blocks are not scaled.
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Implementation of vkFS

In this section we will provide a detailed description of how we implemented vkFS. We will

cover requirements, development environment, review the project hierarchy and some of

its classes and their functionality. Finally, we will touch on some challenges that we faced

during the implementation phase as well as the current limitations of our system.

5.1 Implementation Requirements

After finalizing our design reviewed in chapter 4, we commenced with the implementation

phase. To begin with, we set out a number of implementation requirements that the system

must fulfill. We define the following Implementation Requirements (IR):

• IR1: The system should initialize the file system and setup internal structures as

required by FUSE.

• IR2: The system should be able to retrieve file metadata and perform modifications

to it such as timestamps.

• IR3: The system should be able to create empty files and directories.

• IR4: The system should be able to read from files stored as inline data or in the

underlying file system.

• IR5: The system should be able to write to files stored as inline data or in the

underlying file system.

• IR6: The system should be able to delete files or directories.

• IR7: The system should be able to read the contents of a directory.
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• IR8: The system should be able to truncate a file.

• IR9: The system should be able to modify timestamps in the metadata of a given

file or directory.

5.2 Development Environment

In this section, we provide a brief summary of the development environment used for

our project. The host machine was an Apple MacBook Pro with the following hardware

specifications: an Apple M2 Pro processor, 16 GB of LPDDR5 memory, and a 1 TB

SSD. To ensure compatibility and isolation, we deployed a virtual machine using Parallels

Desktop. The virtual environment was configured to run Ubuntu 22.04 ARM 64 with

8 GB of memory. This configuration allowed us to maintain a consistent development

environment.

Our programming language of choice was C++, utilizing the g++ compiler version

11.4.0 for code compilation. To efficiently handle the build process, we used CMake, which

managed include paths, compiler flags, and the setup of custom benchmark runs. CMake

also facilitated handling program arguments, making it a valuable tool in our development

phase.

For version control, we used Git for local repository management and synchronized our

changes with a remote repository on GitHub. We adhered to common conventions for

repository setup and commit messages. Lastly, the development was conducted using

Visual Studio Code (VSC) IDE, version 1.88.0, which provided a comprehensive environ-

ment for code editing and project management. This setup enabled us to maintain a high

standard of code quality and project organization.

5.3 Project Hierarchy

During medium sized projects like vkFS, it is essential to maintain a clear project hierarchy

and segregate files based on functionality and purpose. In addition, a clear project layout

with good naming conventions makes it easier to locate specific files. The project hierarchy

of vkFS is depicted in Figure 5.1.

The project includes four subdirectories. These include benchmark workloads further

divided into data-intensive and metatdata-intensive, our header files, rocksdb as a sub-

module, and the source code. When following the installation guide of our system more

empty directories will be created such as a directory to store the procuded binaries, the
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Figure 5.1: Project Hierarchy of vkFS

mount directory, the directory to store the metadata from RocksDB, and a directory to

store large files. In our project structure, RocksDB is marked as a submodule using git.

By doing this, we can assure compatibility as we linked the exact commit hash that we

have been using for our development.

5.4 FUSE Operations

During our implementation, we made extensive use of the Filesystem in Userspace (FUSE)

framework, specifically focusing on FUSE 3. The framework consists of three main pack-

ages. First, FUSE3 provides the core utility, allowing to mount the file system and man-

aging the lifecycle of the file system within the user space. Second, libfuse3-3 contains

the shared library including the core functionalities such as linking the FUSE libraries at

runtime. Third, libfuse3-dev provides the headers and static libraries needed for compiling

applications that use FUSE.

The FUSE library defines callback functions for each FUSE operation. In our main

program we linked these to our own custom implementation of these operations. We

did this by defining a FUSE Operation structure and changed the function pointer of

the specific function definition to match the corresponding function implementation of

41



5. IMPLEMENTATION OF VKFS

our system. This results in the FUSE library to use our own custom implementation

when a FUSE operation is called. Understanding the entire FUSE workflow required

some comprehensive testing. For instance, some file system requests result in multiple

fuse operations to be triggered. If an empty file is created using the program “touch”,

fuse creates a series of operations to be sent. These include “getattr” to check if the file

exists, “create” to create the file, “getattr” to check if the file exists now, “flush” to flush the

contents to disk. Immediately after that, FUSE triggers more operations such as “utimens”

to modify timestamps of that file, and also “getattr” to check if these changes have been

made, and “flush” again to write these changes to disk. It is evident that this workflow

takes time to fully grasp and was a challenge during the development process.

5.5 vkFS RocksDB Class

At several scopes of our implementation we needed access to the metadata store, or in

other words, RocksDB. To start with, we passed the pointer for the database initialzed

at the begining of our main program as a parameter to multiple functions throughout our

program. However, as the complexity of the file system grew this became inefficent. At

this point, we decided to deploy a Singleton Design Pattern to make sure different files and

different scopes in our program have access to the same database pointer. In addition, it

was also essential to make sure that there was only a single instance of the database. For

these reasons, the Singleton Design Pattern fit well as it makes sure that only exactly one

copy of the database pointer exists at any time. Furthermore, throughout the program

multiple functions needed to perform basic database operations such as get, put, or delete.

Therefore, we decided to create this separate class handling all operations made to the

database while ensuring that only one instance exists.

5.6 Inode Allocation Handler

vkFS employs a dedicated class to allocate inode numbers during the creation of files and

directories. The root directory is initialized with the well-known inode number 1 upon

system start. Subsequent allocations are assigned new inode numbers in an incremental

fashion. Inode numbers are represented as unsigned 32-bit integers, allowing for up to

232 − 1 total inode numbers to be managed simultaneously.

In addition to incremental assignment, vkFS also recycles inodes that are no longer in

use due to file deletions or directory removals. When recycling an inode, the responsible
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class inserts the inode number into a queue. If a new inode is requested, the system first

checks this queue for available inode numbers to reuse before incrementing a global counter

for the next inode number to be assigned.

When a new inode number is assigned, the class stores it in a hash map where the key is

the full path of the entry, and the value is the inode number. This implementation enables

fast retrieval of inode numbers for a given path and, subsequently, allows for quick access

to the metadata store using the inode number.

The class responsible for assigning inode numbers uses two types of locking mechanisms

to ensure thread safety. First, a shared lock is used whenever an entry is requested to be

read, such as when the system checks if an entry already exists. Secondly, a unique lock

is utilized when creating new entries or deleting existing ones. This locking mechanism is

implemented using the mutex class.

5.7 File System State

vkFS uses a class to globally store information about the file system state. Upon entering

the main program, the system declares an instance of this class to hold various pieces of

information, such as the paths for the metadata, mount directory, and the directory used

to store data in the underlying file system. Additionally, it stores a threshold value that

determines whether data is stored inline or on the underlying file system.

Furthermore, this class contains a boolean flag and a pointer to the class responsible for

inode allocation. The flag indicates whether the root directory has already been initialized.

The pointer to this file system state class is passed as an argument to the main FUSE

function, allowing FUSE operations to access this instance. The following code snippet

illustrates this:

vkfsState fsState = static_cast<vkfsState>(fuse_get_context()->private_data);

Once this pointer is fetched, functions can access critical data about the file system state.

5.8 Metadata Headers

vkFS extensively utilizes a header file that defines the structures used to store metadata

for files and directories. As described in chapter 4, vkFS stores metadata in the value

field of a key-value store. This metadata is encapsulated within a header, defined using a

struct, which includes the length of the file name, a boolean flag indicating whether the
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data is stored as inline data, and the actual metadata. The metadata itself is represented

using the struct stat from the Standard C Library. The structure for vkFS files is shown

in the following code snippet.

struct VKFSFileMetaData {

size_t filename_len;

bool has_external_data;

struct stat file_structure;

};

Upon file creation, a new structure is declared and initialized with the appropriate values.

To write the data to the value field, vkFS uses another defined structure. This structure

holds a char pointer and the corresponding size in bytes. Its declaration is depicted in the

following code snippet.

struct VKFSHeaderSerialized {

uint16_t size;

char* data;

};

The size field is calculated as the sum of several components. First, a special flag,

one byte in length, indicates that the value pertains to a file. Second, the size of the

VKFSFileMetaData structure, as shown above, is included. Lastly, the length of the file

name plus an additional byte for the null-terminating character ’\0’ is added. Thus, upon

file creation, the size field of the VKFSHeaderSerialized structure is initialized to the sum

of the flag, the size of the VKFSFileMetaData structure, the file name length, and an extra

byte for the null-terminating character.

The system then requests the appropriate size of memory on the heap, and the char

pointer of VKFSHeaderSerialized is set to the newly allocated memory returned by the

new keyword. The system writes the data to this location using the memcpy function from

the cstring header file. The contents of VKFSHeaderSerialized are then used as the value

field for a given key and inserted into the metadata store. The process for directories is

almost identical using different values as discussed in chapter 4.

5.9 Interaction with the Underlying File System

vkFS manages data exceeding a pre-defined threshold of 4KiB by storing it in the under-

lying ext4 file system. When the FUSE library receives requests to truncate or write data,

44



5.10 Limitations of vkFS

vkFS checks if the new file size surpasses this threshold. If so, several implementation

techniques are employed to store the data in ext4.

First, vkFS determines the full path for the file within the ext4 system. This is achieved

using a method inspired by the TableFS paper, which is illustrated in the following code

snippet:

std::string getLocalFilePath(VKFSFS_KEY key,std::string datadir){

std::string J = std::to_string(key / 1000);

std::string I = std::to_string(key);

std::string projectPath = getProjectRoot();

std::string fullPath = projectPath + "/" + datadir + "/" + J + "/" + I;

return fullPath;

}

This code maintains a directory structure where each directory contains up to 1,000

files, determined by their inode number (represented as VKFS_KEY). The datadir parameter

specifies the directory within the project structure where these files are stored. To create

a file, vkFS uses the “open” system call with the O_CREAT flag. Data is written to the

file using the “pwrite” system call. Similarly, for read requests, vkFS employs the “read”

system call to retrieve data from the ext4 file system.

5.10 Limitations of vkFS

The current version of vkFS has several limitations due to two primary reasons. First,

the limited time frame for this project allowed for only a subset of functionalities to be

implemented. Second, file systems are inherently complex and require extensive planning

and phased implementation, which were beyond the scope of this work. The key System

Limitations (SL) identified are as follows:

• SL1: Lack of Failure Handling

The current version of vkFS does not include mechanisms to handle system crashes

or data recovery from a Write-Ahead Log (WAL) or other recovery systems. Conse-

quently, any data in the file system is lost upon system shutdown or crash.

• SL2: Incomplete Thread Safety
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While some locking mechanisms have been implemented, the system’s behavior un-

der multi-threaded conditions remains undefined. Full thread safety has not been

achieved at this stage.

• SL3: Limited FUSE Operations Support

vkFS currently supports only a subset of FUSE operations, limiting its functionality

and compatibility with various use cases.

• SL4: Absence of Permission Checking

The system does not perform permission checks when files are opened, written to, or

executed. This absence of security measures could lead to unauthorized access and

operations.

• SL5: No Support for Hard Links

Currently, vkFS does not support the creation of hard links between files, limiting

its ability to create references to the same data from multiple locations.
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Evaluation

In this section, we conduct a comprehensive evaluation of vkFS using both micro and

macro benchmarks utilizing the Filebench benchmarking tool. Filebench provides prede-

fined workloads designed to test specific aspects of a file system’s performance, including

metadata-intensive operations and data-intensive workloads that simulate real-world ap-

plication workloads.

We employ micro benchmarks to test the performance of particular components of the

system, focusing on file system operations that are heavily reliant on metadata. Detailed

descriptions of these workloads and their methodologies will be presented in the subse-

quent sections of this chapter. The primary aim of these benchmarks is to assess how our

design choices discussed in chapter 4 influence vkFS’s ability to enhance performance for

metadata-intensive tasks, thus directly addressing RQ1.

In addition to micro benchmarks, we also employ macro benchmarks to evaluate vkFS in

real-world application workloads, such as those typical for file servers or web servers. These

tests are meaningful in understanding how the system performs in scenarios that extend

beyond the primary focus of our optimizations. Our objective is to show that vkFS can

achieve satisfactory performance with conventional workloads commonly used to evaluate

local file systems.

For a robust and meaningful comparison, all tests are performed on established conven-

tional file systems, including ext4, btrfs, and xfs, as discussed in chapter 2. We describe

each workload used in our tests, present the performance results, and offer a summary

of our findings at the end of each section. The chapter concludes with a summary of all

results and a discussion addressing the research questions posed at the outset.
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6.1 Hardware Configurations

In this section, we detail the hardware and operating system configurations used for our

experiments. All tests were consistently executed on the same physical machine to ensure

comparability and reliability of the results. The hardware setup includes a 20-core Intel

Xeon Silver 4210 CPU running at 2.20 GHz, with two sockets connected in NUMA mode,

complemented by 256 GiB of RAM. The hardware storage is a Samsung NVMe (SAMSUNG

MZQL2960HCJR-00A07) with 960GiB.

For the benchmarks, we utilized a virtual machine (VM) configured with the QEMU

tool, employing only a portion of the host’s available resources. The VM was set up with

a QCOW2 formatted virtual disk image and allocated 2 GiB of RAM. To enhance per-

formance, Kernel-based Virtual Machine (KVM) acceleration was enabled, providing the

VM direct access to the host’s hardware features. Moreover, the VM used the host’s CPU

configuration to ensure compatibility and performance closely aligned with the physical

host. These configurations allowed us to create a controlled and consistent environment

for our performance benchmarks.

6.2 Metadata-Intensive Micro Benchmarks

In this section, we assess the outcomes of the micro benchmarks we conducted. These

benchmarks are chosen to evaluate specific components of a file system, focusing particu-

larly on metadata management. Each subsection includes a description of the workload,

a graph displaying our results, an outline of the results, and a summary of the findings.

The reason for evaluating the following metadata-intensive tasks is to evaluate whether or

not our design introduced in chapter 4 displays a performance benefit in comparison to

the file systems explored in chapter 2. This helps us formulate a conclusion to both our

RQs. If we can observe significant performance benefits throughout the next section, we

can claim that our introduced design has advantages with regard to handling metadata-

intensive tasks, thus addressing RQ1. At the same time, positive results will serve as a

justification for our own design and its implementation in particular, thus also addressing

RQ2. However, if we observe that vkFS performs significantly worse than the traditional

file systems we can discuss whether this occurred as a result of our implementation or

design.
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6.2.1 Setup for Metadata-Intensive Micro Benchmarks

The configuration for all subsequent micro benchmarks follows a similar pattern. Each

workload is executed five times to assess the consistency of the performance achieved.

This repetition helps to ensure that anomalies do not significantly affect our evaluation.

Additionally, each figure will include an error bar showing the standard deviation of our

results, providing a clear indication of each system’s consistency. Four different file systems

will be tested with each workload, including the conventional file systems mentioned in

chapter 2, namely ext4, xfs, and brfs, as well as our own system vkFS. The files systems

will be represented along the x-axis. For each micro benchmark, we will report the average

throughput along the y-axis in Kilo Operations Per Second (KOPS) to simplify large

numbers. This implies that higher values along the y-axis are considered better. All results

will be displayed using a bar chart, allowing for an easy interpretation of our findings.

6.2.2 Create Files

Our first micro benchmark tests the performance of creating empty files in a file system

tree. The workload tasks the file system to create 100,000 empty files. This is the default

number set by Filebench for this micro benchmark. At the start of the workload, Filebench

prepares a file system tree consisting of only directories that are not part of the performance

measurement. Once the file system tree is prepared, the benchmarking process commences,

and 100,000 empty files are requested to be inserted while maintaining an average directory

width of 100 files. The workload involves a significant amount of metadata operations,

including updating directory entries and allocating inode structures. Figure 6.1 shows

our results.

While the conventional file systems btrfs and xfs performed consistently achieving 49.99

KOPS, ext4 performed 6.66% worse than xfs and btrfs achieving an average throughput of

46.66 KOPS. Additionally, a higher standard deviation can be observed for the results of

ext4 in comparison to btrfs and xfs. Upon further inspection of the single runs, our data

indicate that one run performed significantly worse than the other four, producing a high

value for the standard deviation for ext4. The cause of this has not been verified. Our

implementation vkFS performs significantly worse, averaging only 13,52 KOPS. However,

the standard deviation indicates consistent performance across all five runs. To be precise

vkFS performed 72.96% worse than both btrfs and xfs, and 71.02% worse than ext4.

Based on the micro benchmark results, it is evident that while btrfs and xfs consistently

delivered average throughput at 49.99 KOPS, ext4 exhibited performance at only 46.66
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Figure 6.1: Average Throughput (KOPS) for File Creation Across Different File Systems

KOPS on average with notable variability in one of the runs. In contrast, our vkFS file

system, although consistently performing across multiple runs, lagged significantly behind

the others in terms of average throughput.

6.2.3 Stat Files

Our second micro benchmark involved retrieving metadata from existing files. The Filebench

workload first prepares a file system tree with 100,000 empty files, keeping an average di-

rectory width of 100 entries. Once completed, the benchmark starts by executing “getattr”

operations on the files for 60 seconds. These are the default settings set by Filebench for

this micro benchmark. During the getattr operation, the metadata is accessed of each file,

and the modification and access time is set to the current time. The updated metadata is

then returned to the application. This benchmark is especially important to evaluate as

the getattr operation is one of the most common file system operations when using FUSE

(25). Here, we can provide meaningful data on how well the system accesses the meta-

data, performs the modifications, and stores the updated metadata. Figure 6.2 shows

our results.

The Figure 6.2 illustrates that conventional file systems consistently achieve nearly 60

KOPS with a small standard deviation. Ext4’s performance is slightly less consistent than

that of btrfs and xfs. In contrast, our vkFS file system only achieves an average throughput

of 28.97 KOPS. The standard deviation also indicates greater inconsistencies across runs
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Figure 6.2: Average Throughput (KOPS) for Retrieving Metadata Across Different File
Systems

compared to the other file systems.

The results from the stat files benchmark indicate that conventional file systems like

btrfs and xfs handle metadata retrieval operations consistently achieving around 60 KOPS

with standard deviations ranging from 0.57 KOPS to 0.98 KOPS. On the other hand, vkFS

showed a standard deviation of 5.33 KOPS indicating high variation in comparison to the

other file systems. In addition, the performance of vkFS is significantly lower than any

other of the other file systems.

6.2.4 Remove Directories

The third micro benchmark tasks the file system to delete directories. Before performance

measurement begins, Filebench creates a large file tree with an average of 100 empty files

or subdirectories per directory. The benchmark then issues 100,000 requests to delete di-

rectories. When removing a directory, the corresponding entry in the parent directory must

be deleted. This implies that the metadata of the parent directory need to be retrieved,

modified, and written back to where it is stored. The storage location for this metadata is

contingent upon the specific file system in use. Once the metadata of the parent directory

has been updated, the contents of the directory to be deleted are recursively removed,

including files and subdirectories. Since each directory contains an average of 100 entries

the workload is considered to be the same for each individual run. Figure 6.3 shows our

results.
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Figure 6.3: Average Throughput (KOPS) for Deleting Directories Across Different File Sys-
tems

Figures 6.3 shows that ext4 achieves the highest average throughput with 29.99 KOPS.

Btrfs performs similar to ext4 but both file systems produced a standard deviation of 4.56

KOPS. Both of their lowest run is comparable to the average run of xfs. Our data reports

that btrfs achieves 28.33 KOPS on average across five runs, while xfs only achieved an

average throughput of 24.95 KOPS. However, across five runs our data indicates that xfs

achieved the highest consistency during this benchmark with a standard deviation of 0.09

KOPS. The vkFS file system performs poorly in comparison to the other file systems.

vkFS achieved 6.13 KOPS on average. However, its standard deviation reports 0.5 KOPS

indicating less variability in comparisons to btrfs, and ext4 producing consistent results.

The results from this benchmark indicate that among the conventional file systems, ext4

and btrfs achieve the highest average operations per second, with ext4 slightly outper-

forming btrfs. However, both exhibit variability in their performance. In contrast, vkFS

consistently performs at a much lower rate but shows less variability compared to btrfs

and ext4, suggesting that while vkFS is slower, its performance is more predictable.

6.2.5 List Directories

The last micro benchmark we tested is designed to evaluate the performance of listing

directories within a file system. Filebench pre-allocates a large fileset of 100,000 files using

an average directory width of 5. The benchmark lists directories for a total of 60 seconds.

During one operation, the file system checks the metadata of the directory and lists all
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entries and their metadata. This operation can be compared to running a ls -l command

in the terminal. During this workload, directory entries will be retrieved in a sequential

manner. This specific operation is key to performing well on this benchmark. Figure 6.4

shows our results.

Figure 6.4: Average Throughput (KOPS) for Listing Directory Contents Across Different
File Systems

The figure shows similar performance between conventional file systems. Btrfs performed

best with 45.53 KOPS average throughput and a low standard deviation of 0.39 KOPS.

Ext4 and xfs produced a slightly higher standard deviation with 1.26 KOPS and 0.95

KOPS respectively, while still performing similar as btrfs. However, vkFS performs poorly

compared to the other file systems. Here we can observe a significant drop in performance

as vkFS only achieved 5.05 KOPS. This is a performance drop of 89.34% in comparison

to the next best performing file system xfs. Although performance is poor, the file system

produces consistent results throughout the five runs reporting a standard deviation of 0.29

KOPS.

The directory listing benchmark assesses the efficiency of directory listings by pre-

allocating a set of 100,000 files and measuring KOPS over a 60-second period. The findings,

shown in Figure 6.4, reveal that btrfs, ext4, and xfs perform similarly, with btrfs leading

at 45,53 KOPS and all show low standard deviations. In contrast, vkFS falls significantly

behind, achieving only 5.05 KOPS average throughput although it shows consistent results

across the tests.
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6.2.6 Micro Benchmarks Summary

In the above section, we explored the results of various metadata intensive workloads and

measured their average KOPS results and compared it among the different file systems.

Evidently, all conventional file systems produced higher average throughput than our sys-

tem vkFS. vkFS performs poorer on all tests, showcasing consistent runs, nonetheless.

These micro benchmarks are important to conduct in order to draw conclusions about the

performance of a file system with respect to metadata intensive optimization techniques,

and therefore addressing our RQs. Figure 6.5 summaries our micro benchmark results.

Figure 6.5: Summary of Metadata-Intensive Micro Benchmark Results

The results show that while btrfs, ext4 and xfs consistently excel in these operations,

vkFS lags significantly, particularly when listing directories.

6.3 Data-Intensive Macro Benchmarks

In this section, we explore two default macro benchmarks from the Filebench tool. These

workloads give insight into how a system performs under real-world application require-

ments. For example, we run a file server, measure the performance of each file system,

and discuss how they handle the workload. We chose to run a file server and a webserver

as these are common applications to test a file systems performance when tasked with a

real-worl workload (1). This section serves to identify how our system performs when it is
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assigned workloads for which it has not been optimized. We explore two different workloads

in total, describing each result, followed by a summary of all macro benchmarks.

6.3.1 File Server

The file server workload is our first macro benchmark and simulates the typical operations

of a file server environment. This includes a mix of access patterns common for this envi-

ronment. In particular, this workload combines operations such as creating files, opening

files, writing to files, reading from files, opening files, closing files, appending data to a

file, deleting a file, and retrieving metadata from a file. We run the workload a total of

five times for a duration of 60 seconds and report the average throughput in KOPS. We

repeat this process for every file system discussed in this evaluation. Figure 6.6 shows

our results.

Figure 6.6: Average Throughput (KPOS) for Macro Benchmark File Server Across Different
File Systems

Our results show that conventional file systems perform almost identically across all runs

on average. Meanwhile, our vkFS system does not achieve similar performance results.

While xfs achieves 18.54 KOPS average throughput, our system vkFS only achieves 6.86

KOPS. The standard deviation for vkFS also indicates inconsistent results.

The results of our file server macro benchmark reveal that conventional file systems

perform consistently with high average throughput in comparison to our system. vkFS
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shows significantly lower performance and greater variability, highlighting its struggle to

match the performance of established systems.

6.3.2 Web Server

Our last macro benchmark simulates a web server environment. This data-intensive work-

load involves a mix of operations that include opening, writing, reading, and closing files.

The primary focus of this benchmark is to evaluate the capabilities of the file system to

handle these frequent and varied file read and write operations. The data written to the

files is 4KiB on average. We run this workload five times for each file system for a duration

of 60 seconds and measure average throughput in KOPS. Figure 6.7 shows our results.

Figure 6.7: Average Throughput (KPOS) for Macro Benchmark Web Server Across Different
File Systems

Although all conventional file systems perform similar, ext4 performed best at an average

of 59.91 KOPS. In contrast, our system performed the worst at an average of 17.06 KOPS.

During this benchmark, standard deviation across all file systems was low, indicating

consistent performance.

6.3.3 Macro Benchmarks Summary

In this section, we provide a summary of the data-intensive macro benchmarks. We run

two different workloads that simulate different real-world application requirements such
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as a file server and a web server. While the micro benchmarks tested the file systems at

one specific operations, the macro benchmarks included a multitude of operations, shifting

the focus to realistic workloads and access patterns. It is useful to look at both types

of benchmarks to get an idea of how a system performs in a very specific area such as

metadata handling, but also to see how this affects overall performance when dealing with

real-world examples. In addition this evaluation is useful to address potential downsides

of our design and hence addressing RQ1. Figure 6.8 summarizes the macro benchmarks

in one figure.

Figure 6.8: Summary of Macro Benchmarks

6.4 Evaluation Discussion

In this section, we provide a brief discussion of our benchmarking results. From the sum-

maries on both micro and macro benchmark results we can observe that our system vkFS

perfromed the worst overall. The reasons for this have not been verified by means of ex-

perimentation. However, there are some aspects to consider when interpreting the results.

First, the FUSE module introduces a significant messaging overhead between user space

and kernel as discussed in subsection 3.2.2. Moreover, our implementation introduces

additional overhead. However, this has also not been verified by experimentation. For

example, the benchmark Stat Files in subsection 6.2.3 tests the performance of the file

system to retrieve metadata, make small modifications to it, return it, and subsequently
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store the modified metadata. In our implementation, we fetch the metadata from the key-

value store, make the adjustments to the metadata structure, and then initiate the process

of mirroring these changes in the key-value store. However, since the value field stores

more than just the metadata, we initiate another get request to the key-value store to

retrieve additional metadata such as file name, but also its potential inline data. We write

the modified metadata into the corresponding value field and insert it back into the key

value store. This can lead to inefficencies, as the get request is called twice, where other

implementation approaches can reduce this complexity and handle the whole request with

a single get and put request. This complexity in addition with the FUSE overhead could

cause vkFS to perform poor in contrast to other file systems in this specific benchmark

(subsection 6.2.3).

Moreover, the benchmarks have revealed that the List Directories benchmark performed

particularly poorly. Although not verified, we hypothesize that our design to store directory

entries causes inefficiencies. Large value fields are known to throttle the performance of key

value stores, and by adding additional fields to the value field, we allow this performance

drop to occur (3). Especially when reading directory entries, our implementation lacks

efficiency as we perform two get operations for each directory entry, one to retrieve the

file name and one to retrieve the metadata structure. This could be re-factored to aim for

minimizing get requests.

Overall, this evaluation could benefit from approximating the overhead caused by FUSE.

Then, a further analysis is required to determine the overhead caused by our implementa-

tion. This would allow for a more precise analysis of the performance of our design. For

example, two approaches could be considered to approximate the performance of our sys-

tem given the FUSE overhead. First, a FUSE passthrough file system could be developed

that forwards all FUSE operations to the underlying file system using system calls. This

way the FUSE overhead is included in the performance evaluation for the conventional file

systems. Second, a library version of vkFS could be considered. In this version, the bench-

marking process occurs inside the application omitting the overhead of communication

between benchmark application, VFS, and FUSE driver.

With this in mind, future approaches could be utilized to gauge the performance of our

system in more comparable way. However, with our current implementation is is difficult

to claim if our design improved the performance of metadata-intensive workloads.
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Conclusion

In this work, we have outlined our process to develop our own hybrid key-value store

file system to improve metadata handling and achieve performance benefits when tasked

with metadata-intensive operations. We detailed key design decisions, such as the use of

the LSM-tree, storing small files alongside metadata, and allocating inode numbers based

on full paths. We proceeded by providing a brief review of key implementation aspects,

including different classes, the development environment, header files, and the interaction

with the underlying file system.

We then carefully selected multiple benchmark workloads, divided into metadata-intensive

and data-intensive tasks, to test the performance of our system against established stan-

dards like Ext4, XFS, and Btrfs. Our evaluation revealed that the expected performance

benefits were not observed. However, we provided a discussion on the factors that may

have influenced the performance of our system. Although these influences have not been

verified by quantitative data, we offered a hypothesis explaining why the expected perfor-

mance was not achieved. This array of methodologies directly addresses our RQ2. In this

question, we asked how we can design and implement a hybrid key-value store file system.

We are confident that chapter 4 and chapter 5 provide comprehensive answers to this

question.

Additionally, we explored what design options are available in a hybrid key-value store

file system to optimize for metadata-intensive tasks and discussed their advantages and

drawbacks. This exploration represents our RQ1. chapter 3, we provided a compre-

hensive overview of three highly regarded academic papers focusing on metadata handling

using a hybrid key-value store design. We analyzed each design individually, outlining the

intentions behind each design decision from the authors’ perspectives. Subsequently, we

outlined the benefits of the designs as a whole, as well as some drawbacks introduced by
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specific designs. Lastly, we summarized the key takeaways and presented them in Fig-

ure 3.10.

Our literature review revealed multiple design options, most notably horizontal scaling,

a flattened directory tree, and the decoupling of metadata. Our analysis showed that these

design choices offer several benefits, such as improved lookup performance, reduced over-

head during serialization, and effective scaling using a distributed architecture. However,

we also identified some drawbacks, such as large value fields, complex operations like re-

naming, and the challenges of managing horizontal scaling. These points apply to all the

designs collectively rather than a single one. Our work shows that many design options

exist and claiming that one is superior over the other is challenging since every design

comes with some drawbacks as exemplified in Figure 3.10(RQ1). For each use case, one

has to consider which drawbacks are acceptable in relation to performance. Furthermore,

our work has shown that designing and implementing a file system remains challenging

(RQ2). This underlines the necessity for continuous research in the domain of file systems

ensuring that digital infrastructure remains robust and future-proof.

60



References

[1] Kai Ren and Garth Gibson. {TABLEFS}: Enhancing Metadata

{Efficiency} in the Local File System. In 2013 USENIX Annual Technical Con-

ference (USENIX ATC 13), pages 145–156, 2013. iii, 2, 7, 14, 18, 20, 26, 54

[2] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson. IndexFS: Scaling

File System Metadata Performance with Stateless Caching and Bulk Inser-

tion. In SC ’14: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 237–248, 2014. iii, 2, 21, 26

[3] Siyang Li, Youyou Lu, Jiwu Shu, Yang Hu, and Tao Li. LocoFS: A loosely-

coupled metadata service for distributed file systems. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage and

Analysis, pages 1–12, 2017. iii, 20, 26, 27, 31, 32, 58

[4] Göbel T, Türr J, and Baier H. Revisiting Data Hiding Techniques for

Apple File System. ARES ’19: Proceedings of the 14th International Conference

on Availability, Reliability and Security, August 2019. 1

[5] HJ. Kim and JS. Kim. Tuning the Ext4 Filesystem Performance for Android-

Based Smartphones. Sambath, S., Zhu, E. (eds) Frontiers in Computer Education.

Advances in Intelligent and Soft Computing, vol 133, 2012. 1

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. Proc.

19th ACM Symp. Operating Syst. Princ., 2003. 1

[7] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-tree

filesystem. ACM Transactions on Storage 9, 3, 2013. 1

[8] et al. McKusick, Marshall K. A fast file system for UNIX. ACM Transac-

tions on Computer Systems (TOCS) 2.3, pages 81–197, 1984. 1

61



REFERENCES

[9] Rosenblum Mendel and John K. Ousterhout. The design and implemen-

tation of a log-structured file system. ACM Transactions on Computer Systems

(TOCS) 10.1, 1992. 1

[10] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye, Sudarsun Kannan,

Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Scale and per-

formance in a filesystem semi-microkernel. In Proceedings of the ACM SIGOPS

28th Symposium on Operating Systems Principles, pages 819–835, 2021. 1

[11] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark Shel-

lenbaum. The zettabyte file system. In Proc. of the 2nd Usenix Conference on

File and Storage Technologies, 215, 2003. 1

[12] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu

Awasthi, Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. Per-

formance analysis of NVMe SSDs and their implication on real world

databases. In Proceedings of the 8th ACM International Systems and Storage Con-

ference, pages 1–11, 2015. 1

[13] Lanyue Lu, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, and Shan

Lu. A study of Linux file system evolution. In 11th USENIX Conference on

File and Storage Technologies (FAST 13), pages 31–44, 2013. 2

[14] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishi-

moto, and Geoff Peck. Scalability in the XFS File System. In USENIX

Annual Technical Conference, 15, 1996. 2

[15] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. The hadoop distributed file system. In 2010 IEEE 26th sympo-

sium on mass storage systems and technologies (MSST), pages 1–10. Ieee, 2010. 2

[16] Hao Dai, Yang Wang, Kenneth B. Kent, Lingfang Zeng, and Chengzhong

Xu. The State of the Art of Metadata Managements in Large-Scale Dis-

tributed File Systems — Scalability, Performance and Availability. IEEE

Transactions on Parallel and Distributed Systems, 33(12):3850–3869, 2022. 2

[17] Ric Wheeler. One billion files: pushing scalability limits of linux filesystem.

Linux Foudation Events, 2010. 2

62



REFERENCES

[18] Mendel Rosenblum and John K Ousterhout. The design and implemen-

tation of a log-structured file system. ACM Transactions on Computer Systems

(TOCS), 10(1):26–52, 1992. 2

[19] Dutch T Meyer and William J Bolosky. A study of practical deduplica-

tion. ACM Transactions on Storage (ToS), 7(4):1–20, 2012. 2

[20] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dil-

ger, Alex Tomas, and Laurent Vivier. The new ext4 filesystem: current

status and future plans. In Proceedings of the Linux symposium, 2, pages 21–33.

Citeseer, 2007. 7

[21] Darrick Wong. XFS AsciiDoc Documentation tree. 11

[22] Rodeh Ohad, Bacik Josef, and Mason Chris. BTRFS: The Linux B-tree

filesystem. ACM Transactions on Storage (TOS), 9(3):1–32, 2013. 11

[23] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hil-

gard, Andrew Ross, James Lennon, Varun Jain, Harshita Gupta, David

Li, et al. Learning key-value store design. arXiv preprint arXiv:1907.05443,

2019. 13

[24] Sanjay Ghemawat and Jeff Dean. Google/leveldb: Leveldb is a fast key-

value storage library written at Google that provides an ordered mapping

from string keys to string values. 14

[25] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok. To

{FUSE} or not to {FUSE}: Performance of {User-Space} file systems. In

15th USENIX Conference on File and Storage Technologies (FAST 17), pages 59–72,

2017. 15, 16, 20, 31, 50

[26] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan

Gopalakrishnan, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-

Dusseau. Wisckey: Separating keys from values in ssd-conscious storage.

ACM Transactions On Storage (TOS), 13(1):1–28, 2017. 16

[27] Krijn Doekemeijer. TropoDB: Design, Implementation and Evaluation of an Op-

timised KV-Store for NVMe Zoned Namespace Devices. PhD thesis, Universiteit van

Amsterdam, 2022. 17

63

https://git.kernel.org/pub/scm/fs/xfs/xfs-documentation.git/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/google/leveldb


REFERENCES

[28] Google. LevelDB Documentation. https://github.com/google/leveldb/

blob/main/doc/index.md, 2021. Accessed: 2024-06-16. 20

[29] Qin Xin, Ethan L Miller, and SJ Thomas JE Schwarz. Evaluation of

distributed recovery in large-scale storage systems. In Proceedings. 13th IEEE

International Symposium on High performance Distributed Computing, 2004., pages

172–181. IEEE, 2004. 26

64

https://github.com/google/leveldb/blob/main/doc/index.md
https://github.com/google/leveldb/blob/main/doc/index.md


Appendix A

Reproducibility

A.1 Abstract

This artifact descriptions provides an overview on how to access our artifact vkFS , run

the file system, and reproduce the results we have obtained in our evaluation section. We

provide information to any dependencies used as well as guides on how to install them

correctly.

A.2 Artifact check-list (meta-information)

• Program: vkFS (https://github.com/Vincent881909/vkfs)

• Compilation: C++ 17, g++ 11.4.0, CMake 4.3

• Benchmark Tool: Filebench (https://github.com/filebench/filebench/archive/refs/tags/1.4.9.1.tar.gz)

• How much time is needed to prepare workflow (approximately)?: 1h

• How much time is needed to complete experiments (approximately)?: 4h

• Publicly available?: Source code publicly available

• Code licenses (if publicly available)?: MIT LICENSE

A.3 Description

A.3.1 How to access

In order to access our artifact please visit GitHub to locate our remote repository. The

artifcat can be accessed here: https://github.com/Vincent881909/vkfs
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A.3.2 Software Dependencies

The following software dependencies are required for this project:

• g++

• build-essential

• fuse3

• libfuse3-3

• libfuse3-dev

• zlib1g-dev

• libbz2-dev

• liblz4-dev

• libsnappy-dev

• libzstd-dev

• CMake

• bison (For Benchmarking only)

• flex (For Benchmarking only)

• libtool (For Benchmarking only)

• automake (For Benchmarking only)

• Filebench (For Benchmarking only)

A.3.3 Hardware dependencies

The evaluation section was performed on the following hardware:

A.4 Hardware Host

• CPU: 20-core Intel Xeon Silver 4210, 2.20 GHz, NUMA mode, 2 sockets.

• RAM: 256 GiB.

• Storage: Samsung NVMe (960 GiB, SAMSUNG MZQL2960HCJR-00A07).
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A.5 Virtual Machine

• VM Tool: QEMU.

• Resource Allocation: 2 GiB RAM, QCOW2 virtual disk.

• Performance Boost: KVM acceleration for direct hardware access.

• CPU Configuration: Aligned with the host’s CPU for compatibility and perfor-

mance.

A.6 Installation

In order to install our program vkFS please follow the subsequent steps.

1. Clone the repository from GitHub

$ git clone https://github.com/Vincent881909/vkfs.git

$ cd vkfs

2. Install all dependencies with the following command

$ sudo apt-get update

$ sudo apt-get install -y \

g++ \

build-essential \

fuse3 \

libfuse3-3 \

libfuse3-dev \

zlib1g-dev \

libbz2-dev \

liblz4-dev \

libsnappy-dev \

libzstd-dev \

bison \

flex \

libtool \

automake
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3. Install CMake from source

$ wget https://ftp.gnu.org/gnu/make/make-4.3.tar.gz

$ tar -xzvf make-4.3.tar.gz

$ cd make-4.3

$ ./configure

$ make

$ sudo make install

4. Initialize Git Submodule

$ git submodule update --init --recursive

5. Install RocksDB

$ cd rocksdb/

$ make static_lib

$ cd ../

6. Configure FUSE

By default our system uses the -oallow_other flag to allow other users that did not

mount the file system to interact with it. This is required to run the benchmarks

and is also enabled by default in our program. Run the following command to open

the file “/etc/fuse.conf”.

$ sudo nano /etc/fuse.conf

Then remove the “#” before user_allow_other. This ensures that the -oallow_other

flag can be used.

7. Prepare Directories

Our system assumes the following directories exist and will use them for storing

binaries, metadata, local files, and mounting the file system. Create these with the

following command:
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$ mkdir bin mntdir metadir datadir

8. Compile the Program

$ make

9. Run the Program

$ make run

Alternatively, you can run the program in debug mode. This will print the specific

operations called and their arguments. You can run the program in debug mode with

the following command:

$ make run_debug

In order to run the benchmark workloads provided by Filebench we need to install

Filebench.

1. Install Filebench

$ wget https://github.com/filebench/filebench/archive/refs/tags/1.4.9.1.tar.gz

$ tar -xzvf 1.4.9.1.tar.gz

$ cd filebench-1.4.9.1

$ libtoolize

$ aclocal

$ autoheader

$ automake --add-missing

$ autoconf

$ ./configure

$ make

$ sudo make install

$ cd ..

$ rm -rf 1.4.9.1.tar.gz
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2. Disable Virtualization

Filebench requires virtualization to be turned off in order to properly run the work-

loads. Run the following command to disable virtualization:

$ echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

A.7 Experiment workflow

In this section we describe how to reproduce our evaluation. After proper installation of

our program and Filebench we can commence with the benchmarking process. First run

the file system with the following command:

$ make run

Then, in a new terminal window, navigate to the “vkfs/benchmarks” directory. Here,

you have the choice between metadata or data benchmarks. Details of the difference are

established in chapter 6. You can inspect the different workloads for each benchmark. To

run a specific benchmark use the following command. For instance, to run the “createfiles.f”

workload we can use the following command:

$ sudo filebench -f createfiles.f

This will start the “createfiles.f” workload on our system vkFS.

Alternatively, we have provided quick access to all benchmarks using CMake. If you

direct to the “vkfs” directory you can run all micro benchmarks using the following com-

mand:

$ make micro_benchmarks

Similarly, you can run the macro benchmarks using:

$ make macro_benchmarks

In each case, this command will run all micro or macro benchmarks in sequence.
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A.7.1 Running the Benchmarks on Conventional File Systems

In order to run the benchmarks on ext4, xfs, or btrfs we have to follow a couple of steps.

First we need to make sure we have the required packages to create the specified file

systems. For that we need:

$ sudo apt install e2fsprogs xfsprogs btrfs-progs util-linux

Then we need to create disk images at a size of 10GB. To do this run:

$ dd if=/dev/zero of=ext4.img bs=1G count=10

$ dd if=/dev/zero of=xfs.img bs=1G count=10

$ dd if=/dev/zero of=btrfs.img bs=1G count=10

Then we need to format these images to the specified file systems like so:

$ sudo mkfs.ext4 ext4.img

$ sudo mkfs.xfs xfs.img

$ sudo mkfs.btrfs btrfs.img

Create mount points for each file system:

$ sudo mkdir -p /mnt/ext4

$ sudo mkdir -p /mnt/xfs

$ sudo mkdir -p /mnt/btrfs

And lastly, mount the file systems.

$ sudo mount -o loop ext4.img /mnt/ext4

$ sudo mount -o loop xfs.img /mnt/xfs

$ sudo mount -o loop btrfs.img /mnt/btrfs

To run the benchmarks, we need to navigate to the single Filebench files located at either

“vkfs/benchmarks/metadata” and “vkfs/benchmarks/data”. For each file we need to adjust

the directory to the previously specified mount points. For example, for xfs this would be

“/mnt/xfs”. We can do this altering the following line:

$ set $dir=MOUNT_DIRECTORY

Replace MOUNT_DIRECTORY with the directory that is mounted for the individual

fie system. To execute the benchmarks, navigate back to the “vkfs” directory and run the

following to execute all workloads:

$ make micro_benchmarks && make macro_benchmarks

This will run all benchmarks in sequence.
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A.8 Evaluation and expected results

The above section outlines how we prepared our evalutation section. Once everything has

been set up we started with the actual benchmrarking process. First, we tested the three

conventional file systems ext4, btrfs, and xfs. We followed the instructions above and then

run the following command five times:

$ make micro_benchmarks && make macro_benchmarks

This will run all our tests once. We repeated this five times. We manually added the re-

sults to a .csv file. This file can be inspected at “vkfs/benchmarks/benchmarkResults.csv”.

We repeated this for all file systems.

A.8.1 Expected Results

We expected our system vkFS achieve higher average throughput than the conventional

file systems. This was the main objective of developing vkFS. In contrast, we expected

that the conventional file systems would yield varied performance results, with disparities

in throughput. This is due to their different designs, explored in chapter 2. However, the

results for the conventional file systems ended up being very close to each other. Perhaps,

the scale at which we run the workloads was not sufficient to observe disparities. More

concrete, it would have been beneficial to run the workloads at large scale for example

instead of creating 100,000 files, create 1,000,000 files. Moreover, our system did not

perform as expected. However, as mentioned in our chapter 6 we hypothesize that this

was due to the large overhead caused by FUSE. However, this has not been verified.
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