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LSM-trees use fast NVMe flash
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LSM-trees use fast, but unstable NVMe flash

Small write throughput
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LSM-trees use fast, but unstable NVMe flash

Small write throughput
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What about WAL's requirements? Is there another interface?
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Meet NVMe Zoned Namespace (ZNS)

e A new NVMe standard
® Firmware
e Stable performance ro— Small write throughput
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What we will discuss today

WALs for the throughput stable NVMe ZNS interface

WAL

Small writes scale?
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What operations does a WAL need?

An append-only log of all changes to KV-pairs with two key operations:

Write to WAL Recover WAL

Update(K1, V2) @
_ Apply

Owrite Update(K1, V1); |:> Memtable

@Read all




Background: Why ZNS writes do not scale

ZNS: storage as a series of sequential write-only zones

Zone 1 Zone ... Zone N
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Background: Why ZNS writes do not scale

So how does ZNS deal with 3 consecutive Writes?

W1

W2
W3

Zone



Background: Why ZNS writes do not scale

Subsequent Writes have to wait, serializing 1/0!

wi B Written
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Thus WAL writes with ZNS writes do not scale!

WAL WAL WAL
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Meet the ZNS Append operation

® ZNS has a scalable alternative for Writes, Appends

e How does ZNS deal with 3 consecutive Appends? .
W Wi C cutiv pp -ertten
Al A2 A3 I Empty
vV ¥V ¥

Zone appends are issued concurrently to a zone



Meet the ZNS Append operation

® ZNS has a scalable alternative for Writes, Appends
e How does ZNS deal with 3 consecutive Appends? - .
Written

Al A2 A3 A2’ I Empty

A1 A
& Y A3’

Completion

—>

Addresses returned on completion, but can be anywhere and are ephemeral!
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/NS appends are fast!

Throughput 8 KiB requests
= Writes = Appends
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Idea: ZWALs, use ZNS appends for the WAL to scale



Introducing ZWAL: WALSs with appends

What is the goal?

o Get WAL writes to scale
How?

o Use ZNS appends
What are the challenges?:

1. Appends can be reordered
2. Recovering data efficiently
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Challenge-1: How to deal with reordering?

WAL can not use append as is:
e WAL entries are reordered
e WAL entry addresses are ephemeral...

WAL WAL

i ?
Al AD A3 Wher’e is Al

Completion
T =
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ZWAL's solution: add monotonic identifiers

ZWAL solves the issue with:
e Monotonic identifier S for each WAL entry
e Infer ordering from identifiers

WAL WAL
is A1?
S5+A1 S6+A2 S7+A3 Where is Al:

Completion
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Challenge-2: expensive WAL recovery

e WAL recovered in order
® Location needed for each Read
® Scans the whole log for each Read

Sorting the WAL

\VZ\8S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12




ZWAL’s solution: Add barriers

® Bounds the number of Reads
e Sync all Appends after a barrier

Barrier 1 Barrier 2 Barrier 3
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ZWAL’s solution: Add barriers

® Bounds the number of Reads
e Sync all Appends after a barrier

Barrier 1 Barrier 2 Barrier 3
I I I |
: : Strictly > 4 : Strictly > 8 I
I
I I I
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Evaluation setup

e State-of-the-art RocksDB + ZenFS Baseline ZWAL
® Experiments:
1. Evaluate write throughput with YCSB
2. Evaluate WAL recovery
® Runon 2 ZNS SSDs
o WD ZN540, 1.94TiB, 1.6GiB zones
o ConfZNS emulator, 2 GiB zones

% RocksDB ﬁ RocksDB
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Experiment 1: ZWAL Write throughput

ZWAL Implemented in RocksDB + modified ZenFS
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Experiment 1: ZWAL Write throughput

ZWAL Implemented in RocksDB + modified ZenFS
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Take-away message

® LSM-trees use unstable NVMe flash storage
o ZNS allows for stable performance!

® LSM-tree WALs do not scale with ZNS Writes ZWAL

o Use ZNS Appends instead!
e We introduce ZWALs, Append-friendly WALs for ZNS

Paper: https://atlarge-research.com/pdfs/2024-zns-wal.pdf
Source code: https://github.com/stonet-research/zwal

Lpot
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Experiment 2: Recovery overhead?

Contrary to expectations, we reduced the required recovery time

WAL Recovery time in RocksDB

m ZenFS = ZWAL
20.9 o, 84.

O N K~ OO

64 128 256 512 1024

Recovery time (s)

WAL size (MiB)
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What next?

e Beyond ZenFS

e Use ZWALs in other databases (SQLite...)

e Use ZWALs in distributed settings
©  One SSD with WALs from multiple RocksDBs!
o Disaggregated storage (NVMe-oF)

(3 °
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WAL versus ZWAL
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/WAL buffering
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/WAL Recovery breakdown

Recovery time (s)
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Background: NVMe interface
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ZWAL: Rethinking Write-ahead Logs for ZNS SSDs
with Zone Appends

Krijn Doekemeijer
Vrije Universiteit Amsterdam
The Netherlands

Nick Tehrany*
BlueOne Business Software LLC
Beverly Hills, CA, USA

Abstract

KV-stores are extensively used databases that require per-
formance stability. Zoned Namespace (ZNS) is an emerging
interface for flash storage devices that provides such stabil-
ity. Due to their sequential write access pattemns, LSM trees,
ubiquitous data structures in KV stores, present a natural
fit for the append-only ZNS interface. However, LSM-trees
achieve limited write throughput on ZNS. This limitation
is because the largest portion of LSM-tree writes are small
writes for the write-ahead log (WAL) component of LSM-
trees, and ZNS has limited performance for small write /0.
The ZNS-specific zone append operation presents a solution,
enhancing the throughput of small sequential writes. Still,
zone appends are challenging to utilize in WALs. The storage
device is allowed to reorder the data of zone appends, which
is not supported by WAL recovery. Therefore, we need to
change the WAL design to support such reordering.

This paper introduces ZWALS, a new WAL design that
uses zone appends to increase LSM-tree write throughput.
They are resilient to reordering by adding identifiers to each
append along with a novel recovery technique. We imple-
ment ZWALS in the state-of-the-art combination of RocksDB
and ZenFS and report up to 8.56 times higher throughput
on the YCSB benchmark. We open-source all our code at
https://github.com/stonet-research/zwal.

CCS Concepts: « Information systems — Storage man-
agement; Flash memory; « Software and its engineering
— Secondary storage.

*Work done while the author was at the Vrije Universiteit Amsterdam.

Permission to make digital or hard copies of all or part of this work for
P e not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lsts, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

CHEOPS'24, April 22, 2024, Athens, Greece

© 2021 ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

itps:/doi.org/XXXXXXX XXXXXXX

Zebin Ren
Vrije Universiteit Amsterdam
The Netherlands

Animesh Trivedi
Vrije Universiteit Amsterdam
The Netherlands

Keywords: Write-ahead log, Key-Value store, ZNS SSDs
ACM Reference Format:

Krijn Dockemeijer, Zebin Ren, Nick Tehrany, and Animesh Trivedi.
2024, ZWAL: Rethinking Write-ahead Logs for ZNS SSDs with
Zone Appends. In Proceedings of The fourth Workshop on Chal-
lenges and Opportunities of Efficient and Performant Storage Systems
(CHEOPS’24). ACM, New York, NY, USA, 8 pages. https://doi.org,
XXXXXXXXXXXXXX

1 Introduction

Log-structured merge-tree (LSM-tree) based KV-stores are
extensively used databases, with workloads ranging from
graph processing to machine learning [5, 7, 12]. KV-stores
store application data as KV-pairs with the PUT operation.
The average KV-pair size issued by applications is small (e.g.,
1KiB) [5], resulting in many small writes to the LSM-tree.
This paper focuses on optimizing LSM-tree write throughput
for small writes on ZNS, an emerging storage interface.

We visualize the LSM-tree PUT operation in Fig. 1. Large se-
quential writes achieve higher throughput than small writes,
therefore, LSM-trees buffer KV-pair updates in memory and
periodically flush data to storage. The LSM-tree first store
KV-pairs inside volatile memory to a size-bounded compo-
nent known as the memtable. When this memtable is suffi-
ciently large, the LSM-tree flushes the memtable to a tree-like
structure on storage. To ensure no data is lost on shutdown,
the LSM-tree writes PUT operations to an on-storage log
known as the write-ahead log (WAL). The WAL maintains all
KV-pair changes over time. When the KV-store restarts, the
LSM-tree recovers its state using a process known as WAL
recovery. WAL recovery reads all WAL data sequentially and
(re)applies it to the memtable. Data must be applied sequen-
tially, as only the most recent change to a KV-pair is valid.
The WAL is crucial for achieving high write throughput
because each PUT writes to the WAL.

LSM-trees are typically deployed on fast and highly par-
allel NVMe flash SSDs. Flash storage performs better with
sequential- than with random writes [17], precisely the ac-
cess pattern of LSM-trees. However, with NVMe the SSD
issues internal management operations that compete for
storage resources with LSM-trees. This competition results
in unstable throughput, which hinders achievable LSM-tree
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Figure 1. LSM-tree PUT operation with write 7O or zone
append for the WAL.

throughput [3, 34]. Therefore, researchers and industry have
proposed leveraging different interface(s) for flash SSDs [3,
4,22]. One such interface is the recently standardized Zoned
Namespaces (ZNS) interface [3]. ZNS presents the storage as
sequential write-only regions known as zones and exposes
the to ZNS del

ble throughput by exposing these operations. Consequently,
ZNS has led to several LSM-tree designs [21,27, 31].

While ZNS achieves stable LSM-tree throughput, it leads
to significant write throughput challenges for the WAL com-
ponent of the LSM-tree. ZNS prohibits applications from
issuing write I/Os concurrently to the same zone. ZNS pro-
hibits this because (1) write 1/Os need to be issued to sequen-
tial addresses of the zone (sequential write-only zones), and
(2) SSDs are free to reorder /O requests [30]. This restric-
tion serializes writes to the WAL PUTs, limiting achievable
throughput to the WAL as only 1 PUT can be processed con-
currently [28].

To address write I/O’s limited throughput, ZNS has in-
troduced an alternative operation known as zone appends.
Zone appends allow concurrent write operations to the same
zone, saturating device parallelism and significantly increas-
ing small write throughput [2]. High concurrency makes it a
good alternative to use for WAL [2, 28, 32]. Nevertheless, we
can not interchange zone appends for write I/O’s without
modifications. The main challenge is that zone appends are
issued to azone, not an address, and only return their address
on completion. This address can be anywhere in a zone, and
consequently, the SSD can reorder WAL data. Thus, the WAL
needs to be resistant to data reordering. Therefore, current
WAL designs on ZNS (such as RocksDB + ZenFS [36]) only
use write I/O or only allow scaling zone appends by increas-
ing threads [28]. We visualize the reordering challenge as 2"
in Fig. 1.

This work proposes ZWALs, a zone append-friendly WAL
for ZNS. ZWALs improve write throughput on ZNS and is
resilient against data reordering. They achieve this feat by
adding 64-bit atomically increasing sequence numbers to
each PUT request. The sequence numbers specify the absolute
ordering of data and are used to infer the order within the
WAL. On recovery, the WAL reads all of its KV-pair changes
and then sorts them back into their original order using the
sequence number. After sorting, the LSM-tree applies the

More details/results in the paper ...
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changes in sequence. Considering that LSM-tree WALs are
generally only recovered during database startup and WALs
are small (e.g., 32 MiB), we consider trading WAL read for
better write throughput acceptable. To reduce the overhead
of reordering and to prevent reading the entire WAL, we
introduce the notion of WAL barriers. A ZWAL synchronizes
all zone appends at a barrier. Barriers ensure that a read to
the WAL only needs to read and sort between subsequent
barriers, increasing WAL read performance.

We implement ZWALs in ZenFS, a state-of-the-art custom
file system backend of RocksDB, and report that ZWAL leads
to signi higher write tk | than traditional
WAL on commercially available ZNS SSDs, up to 33.02%
higher throughput on the YCSB benchmark suite. Similarly,
we repeat our experiments on the ConfZNS [33] emulator
and report that with high internal parallelism, ZWAL can
deliver up to 8.56 times higher write throughput on YCSB.

In this paper, we make the following key contributions:

1. We characterize the performance of the zone append
operation and explain how we can leverage them for
WALs.

2. We design and implement ZWAL s—a new WAL design
for ZNS zone appends.

3. We evaluate ZWALs on both the micro- and macrolevel.

4. We open-source the code of our ZWAL implementation
at https://github.com/stonet- research/zwal.

2 Motivation: Why use zone appends?

Below, we demonstrate a performance characterization of
zone appends. The design of ZWAL relies on high write con-
currency and throughput for small writes. In this section, we
show how zone appends lead to higher write concurrency
and throughput than wri te /O to motivate their use-case
in WALS. In our benchmarking, we use fio [19] (v3.32) asa
workload generator. We use the io_uring storage interface
with NVMe passthrough [20] since the Linux block layer
does not support zone appends and follow recommended
performance optimizations [10]. We modify fio to support
zone appends for passthrough (~10 LOC). We show the rest
of our benchmarking setup in Tab. 1.

We evaluate the concurrency of zone appends by increas-
ing the queue depth (QD)—the maximum number of con-
current zone appends—and measure throughput in 1/0 op-
erations per second (IOPS). Since ZNS prohibits multiple
write I/Os to the same zone, we only evaluate write I/0 at
QD 1. We issue all requests at a granularity of 8KiB, which
we evaluate as the optimal request size (ie., lowest request
latencies). Fig. 2a shows the throughput of zone appends in
1OPS (y-axis, higher is better) with increasing QD (x-axis).
Zone appends scale up to a QD of 4, beyond which the de-
vice’s peak bandwidth is reached according to the device’s
specification sheet. We observe that write throughput is up
to 2.41 times higher for zone appends (at high QD) than for
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