UNIVERSITEIT
AMSTERDAM

1 |@Large Research VU % VRUE
>

Massivizing Computer Systems

Does Linux Provide Performance Isolation for
NVMe SSDs? Configuring cgroups for 1/0
Control in the NVMe Era

Krijn Doekemeijer, Zebin Ren, Tiziano De Matteis, Balakrishnan
Chandrasekaran, and Animesh Trivedi

https://krien.github.io/

The amount of data is ever-increasing

&
@;Pcé \aWS’ DS

Serverless

Databases

Machine and caches

~ learning

1 Yotta byte\
each year!

Data centers use NVMe SSDs for fast storage

&
®;PCIf \aWS 3\3

Serverless

Databases

Machine and caches

~ learning

How fast is NVMe again?

Key point: NVMe SSDs obsolete the decades-long rule that storage is slow.

NVMe SDD

Latency: ms Latency: us
Bandwidth: KiB/s Bandwidth: GiB/s

How fast is NVMe again?

Key point: NVMe SSDs obsolete the decades-long rule that storage is slow.

HDD NVMe SDD

Latency: ms Latency: us
Bandwidth: KiB/s Bandwidth: GiB/s

Problem: OS software is designed for slow storage and generally has
VUV high overhead as a result.
~

Data centers share NVMe storage resources

Key point: NVMe SSDs are shared by many workloads concurrently.

Data centers share NVMe storage resources

Key point: NVMe SSDs are shared by many workloads concurrently.

Problem: There is a need for performance isolation between workloads.

VU¥ 3

Key problem addressed in this work

Can Linux enable low overhead performance isolation for NVMe SSDs out of
the box?

& aws - [

Open problems and contributions

1. What is storage performance isolation?
2. How to measure performance isolation?

3. What level of performance isolation is Linux capable of?

Open problems and contributions

1. What is the definition of storage performance isolation?
> A unified definition of storage performance isolation (survey)
2. How to measure performance isolation?

3. What level of performance isolation is Linux capable of?

Open problems and contributions

1. What is the definition of storage performance isolation?

> A unified definition of storage performance isolation (survey)

2. How to measure performance isolation?

> isol-bench, a performance isolation benchmark suite

3. What level of performance isolation is Linux capable of?

Open problems and contributions

1. What is the definition of storage performance isolation?
> A unified definition of storage performance isolation (survey)
2. How to measure performance isolation?
> isol-bench, a performance isolation benchmark suite
3. What level of low overhead performance isolation is Linux capable of?

> Evaluation and configuration exploration of state-of-the-practice

cgroups

VU 5

RQ1: What is storage performance isolation?

Using a survey of academic literature, we find a unified definition of isolation:

RQ1: What is storage performance isolation?

Using a survey of academic literature, we find a unified definition of isolation:

We explain isolation using the following illustration, where two tenants share an SSD’s

4 bandwidth shares

| No knob | Versusl Knob |

Available Bandwidth:
yy e Bandwidth: O OO0

RQ1: What is storage performance isolation?

Using a survey of academic literature, we find a unified definition of isolation:

1. Low overhead g g @ @
> |atency, scalability, CPU ? ?

| Low overhead | Versus | High overhead |

| | | s R]

RQ1: What is storage performance isolation?

Using a survey of academic literature, we find a unified definition of

isolation:
1. Low overhead

2. Proportional fairness Unfair | Versus o

Equal bandwidth
Important if access patterns
are different, e.g., request size

> Jain’s fairness index] e | o | |

V'V

RQ1: What is storage performance isolation?

Using a survey of academic literature, we find a unified definition of isolation:

1. Low overhead ? ?
2. Proportional fairness

Priority | Versus | Utilization

3. Priority utilization trade-offs

> Priority tenants
> Administrator wants utilization
> How to trade-off

priority against utilization?|:”:I :I. 110
VU¥

RQ1: What is storage performance isolation?

Using a survey of academic literature, we find a unified definition of isolation:
1. Low overhead
2. Proportional fairness

3. Priority utilization trade-offs

dWS

4. Burst support N >

> Many workloads, e.g., serverless, are short running (ms)

VU¥

RQ2: How to measure performance isolation?

We introduce isol-bench, a benchmark suite

Isolation For each measure independently

eI N N

i Priorit .
Low Proportional - .y Priority burst
overhead Fairness Utllizasion support
trade-offs PP

VU 7

RQ2: How to measure performance isolation?

We introduce isol-bench, a benchmark suite

Isolation For each measure independently

eI N N

i Priorit .
Low Proportional - .y Priority burst
overhead Fairness Utllizasion support
trade-offs PP

Important: not a single metric is returned as operator needs differ!
VU 7

Background: cgroups - Linux 1/O control

® In Linux all processes are part of a cgroup
® A cgroup, or control group, controls the resources its collective processes

can use
mEmEn r

‘ group-a.service ‘ group-b.service

@ fﬁﬁ RocksDB a S
"/

Background: cgroups - Linux 1/O control

® In Linux all processes are part of a cgroup

® A cgroup, or control group, controls the
resources its collective processes can use

e |/O control knobs limit storage resources T

O e.g.i0.max Max bandwidth =
1 GiB/s 10 GiB/s

‘ group-b.service

@ ﬁ RocksDB a S

‘ group-a.service

Background: cgroups - Linux 1/O control

® In Linux all processes are part of a cgroup
® A cgroup, or control group, controls the) ‘ Root ‘

resources its collective processes can use o
e |/O control knobs limit storage resources 1 G'Bi/\ 5 GiB/s

O e.g.io.max

group-a.service

® cgroups is hierarchical
@ ‘ 10 GiB/s
‘ group-b.service \

BS s

VU 8

‘ group-b.slice

Background: cgroups - Linux 1/O control

In Linux all processes are part of a cgroup
A cgroup, or control group, controls the) ‘ Root ‘

resources its collective processes can use @
/0 control knobs limit storage resources | G'Bi/\ 5 GiB/s

cgroups is hierarchical

group-a.service

‘ group-b.slice

In total 5 knobs:

1. io.max @ ‘ 10 GiB/s
2. io.latency ‘ group-b.service \
3. io.cost

4. MQ-DL

. bra -
be 8

RQ3: What performance isolation is Linux capable of?

Using isol-bench we evaluate all four isolation desiderata for cgroups

RQ3: What performance isolation is Linux capable of?

Using isol-bench we evaluate all four isolation desiderata for cgroups, i.e., fill in ?

cgroup knob | Low overhead | Proportional Priority utilization Priority bursts
Fairness trade-offs

MQ-DL ? ? ? ?

BFQ ? ? ? ?

i0.max ? ? ? ?

io.latency ? ? ? ?

j0.cost ? ? ? ?

VU 9

RQ3: What performance isolation is Linux capable of?

Using isol-bench we evaluate all four isolation desiderata for cgroups, i.e., fill in ?

cgroup knob Low Proportional Priority utilization Priority bursts
overhead Fairness trade-offs
MQ-DL ? ?
BFQ We will discuss ?
i0.max these two as 5
examples
io.latency ? ?
j0.cost ? ?

VU%? Question: Which knob provides most isolation? 9

Isol-bench setup for cgroups

e Workload generator: fio

isol-bench

Fio \ \ Fio

tenant 1 tenant N

o Use one fio instance per client
e OS config: Linux 6.9, DIRECT_IO, no file system
e Runon 2 NVMe SSD models

o 1-7 Flash medium: Samsung 980 pro

o 1-7 Other medium: Intel Optane

VU¥ 10

Desiderata 1: Low performance overhead

Latency CDF
(more to left is better)

F

£

= 0.75 no knob
- .

o, io.max

.g 0.5 io.latency
E io.cost
20.25- MQ-DL
5 —w— BFQ

0 . T a
01 2 3 4 5 6 7 8 9 10
Latency (ms)

Desiderata 1: Low performance overhead

Latency CDF
(more to left is better)

> 1.0-
'_'g

-8 0.75 no knob
E.. i0.max

2 0.5 io.latency
e ’

K 10.cost
20.25- MQ-DL
5 BFQ

0 — . — — ; ;
01 2 3 4 5 6 7 8 9 10
Latency (ms)

VU¥ Schedulers have high overhead! = 11

Desiderata 2: Fairness

e \Workload characteristics affect fairness!
O Request size
O Access patterns
o Mixed reads and writes

e We give an example of request size (4 KiB and 256 KiB mixed).

VU¥ 12

Desiderata 2: Fairness

Jain’s fairness index for a mixed workload of 4 and 256 KiB
(Higher is better)

e~
o

c
o’

=
=)

=
'

Jain’s fairness index
e
[©)

=
o

Desiderata 2: Fairness

Jain’s fairness index for a mixed workload of 4 and 256 KiB
(Higher is better)

e~
o

e = B
- S

Jain’s fairness index
e
[©)

=
o

e io.max and io.cost lead to fairness
VU% (for reference, a fairness of 0.5 can be a 100+MiBs difference) 13

Overall results

Desiderata achieved per knob:

cgroup knob | Low overhead | Proportional Priority utilization Priority bursts
Fairness trade-offs

MQ-DL X X X X

BFQ X X X X

i0.max v — — —

io.latency v X — X

io.cost — v v v

VU 14

Overall results

Desiderata achieved per knob:

cgroup knob | Low overhead | Proportional Priority utilization Priority bursts
Fairness trade-offs
X
X
i0.max v — — —
io.latency v X — X
io.cost — v v v

1/0 schedulers were already confirmed to have high overhead. Here we confirm that
VU
= they do not enable isolation either. 14

Overall results

Desiderata achieved per knob:

cgroup knob | Low overhead | Proportional Priority utilization Priority bursts
Fairness trade-offs

MQ-DL X X X X

BFQ X X X X

i0.max v — — —

io.latency v X — X

io.cost — v v v

VU%’ io.cost provides highest isolation, but occurs an overhead past CPU saturation.

14

What to do with our results

Our results show that practitioners:
1. 1/0 schedulers should be avoided for NVMe, even for isolation.
2. io.cost can be used for isolation instead.

a. Meta already uses io.cost in production.

Does Linux Provide Performance Isolation for
NVMe SSDs? Configuring cgroups for I/O Control
in the NVMe Era

Krijn Doekemeijer (- Zebin Ren Tiziano De Matteis ()
Department of Computer Suen(e Department of Cumpmer Qufme Department of Computer Science
Vrije Uni i Vrije U Vrije Universiteit Amsterdam
the d; the N & sterd: the

Balakrishnan Chandrasekaran (%)
Department of Computer Science
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

Abstract—Modern storage workloads commonly run in con-
tainers within data centers, such as machine learning, databases,
caches, HPC, and senerless workloads. To facilitate the storage

€. idth, latency) of these
workloads, data centers have adopted fast NVMe SSDs as a
storage medium. At the same time, data centers virtualize and
share these storage resources with multiple tenants to improve
resource utilization and reduce costs. Such sharing lﬂds to
an inherent trade-off between tenant performance and
SSD utilization. Although various research studies drmﬂnnmte
how to achieve various performance isolation properties, such
as fairness, there is neither a unified definition for perfnrmame
isolation nor a the unlallun
of tice /O control in the Linux
kernel are not well understood. In this paper. we address
these three challenges. First, we survey the definition of perfor-
mance isolation and uncover four common performance isolation
desiderata. Second, we introduce isol-bench, a benchmark
for evaluating these desiderata for 1/0 control mechanisms.
Third, ue use isol-bench to evaluate VO isolation for Linux’s
ice /O control jism, cgroups. From our
evnluamn, we are able to conclude that out of cgroups’s knobs
io.cost achieves the most isolation desiderata, but has a latency
overhead past CPU saturation. ‘We open-source the mlm:e code

Animesh Trivedi |5
IBM Research Europe
Zurich, Switzerland

TABLE I: Performance isolation desiderata for cgroups; the
+" indicates that a knob had to be evaluated together with
an 1O scheduler (i.e., MO-DL, BFQ) or other knob.

cgroups 110 Low Proportional Priority Priority
control knob Overhead Fairness Utilization Bursts
Trade-offs
] X x X
X X x X
+ BFQ
v X - X
— 3 v

NVMe SSD storage with single-digit microsecond latencies,
millions of I0PS of throughput, and GiB/s of bandwidth [38].
[78). However, since SSD resource wtilization by workloads
is typically low [7I]. [T00), storage resources are virtualized
and shared between containerized tenants to improve SSD
utilization and prevent resource stranding [64]. [71].. (73]. [84).
(100]. Sharing leads t© an implicit trade-off between SSD

of isol-bench at and tenant isolation: hence, various
Index Te -groups, NVMe, works i i how to co-locate tenants while isolating
isolation

1. INTRODUCTION

A large number of storage workloads run in contain-
ers within data centers, including machi i
databases [94], caches . an app
tions [50], [93]. To facilitate the pevformame requirements of
such containerized workloads, data centers have adopted fast

This work is partially supported by Netherlands-funded projects NWO
OffSense (OCENW.KLEIN.209), NWO MLS (OCENW.KLEIN.561), and
GFP 6G FNS. The work is also supported by EU-funded projects MSCA
CloudStars (g.a. 101086248) and Horizon Graph Massivizer (g.a. 101093202).
Krijn Doekemeijer is funded by the VU PhD innovation program.

tenant performance (34), (53], . Nevertheless. there is
limited understanding of the structural definition of perfor-
mance isolation for storage and a common benchmark to
compare isolation capabilities. In this work, we address these
shortcomings by :uneymg storage performmce nmlanon o

and the of
isolation, and by benchmarking the uolauon capabilities of
Linux’s cgroups /O control knobs.

The first challenge we address is the lack of a unified
definition and common benchmark for storage performance
isolation, i.e., research studies use different properties and met-
rics to evaluate isolation. For example, some works consider
isolation as minimizing tail latency for priority workloads [61),

whereas others focus on faimess [82. In short, there is
no unified definition of storage performance isolation. This
fack of definition limits the effectiveness of isoltion efforts
and leads to apples sons when

solutions such as the various knobs exposed in cgroups. To
address this challenge, we take a two-pronged approach. First,
we define isolation by summarizing the state-of-the-pra
isolation desiderata using a survey. From this survey, we derive
four performance isolation desiderata, which we discuss in
detail in[§TT} Second, to effectively compare isolation solutions,
we propose i1 -bench, a benchmark suite that evaluates

The next challenge we address is lhul the performance
isolation capabilities of state-of-the-practice I/O control knobs
on NVMe SSDs are unknown for Linux. Enabling isolation
properties for NVMe SSDs on the host is challenging because
(i) 1/O workloads are highly dynamic [74]; (i) NVMe SSDs
have high performance requiring low CPU overhead for 1/O
control [91]; (iii) SSD performance models differ sig:
cantly [54]: dnd (lv) the SSD internal flash medmm has various

More details/results in the paper...

utilization, and priority burst support.

« isol-bench, a benchmarking suite for storage perfor-
mance isolation, which we use to evaluate the isolation
capabilities of cgroups 1/ control knobs.

« A firstof-itskind study of performance isolation for
cgroups on NVMe SSDs, where, through 10 observations,
we determine that io.cost achieves most of the isola-
tion desiderata, d¢ i on its i

To facilitate reproduction, we open-source design and
implementation of our code as FAIR data sets at https:
Igithub. isol-bench,

II. SURVEY ON STORAGE PERFORMANCE ISOLATION

In this section, we survey the definition of performance
isolation in the context of (NVMe) SSDs. With this survey, we
aim to address two key challenges: there is currently a lack of
understanding of the broader definition of storage performance
isolation and a lack of a methodology for evaluating such
isolation. Our survey addresses these problems by

[54] (e.g.. asy read and
write sarbage ion). Various state-of-the-a
solutions have been proposed to improve SSD isolation. Such
works typically utilize hardware-specific isolation, requiring
specialized SSDs such as open-channel SSDs [I7)
[83). or employ software isolation, typically running in user-
ace or modified kernels [37). However, access to specialized
hardware is often infeasible due to costs or availability, and
custom software solutions require domain expertise; hence. it
equally vital to understand what is already available in the
Linux kernel by default. In this work, we use isol- bench o
the isolation ilities of the s f-the-pi
cgroups.

The state-of-the-practice for containers in Linux is to use
platforms such as Docker, LXC/LXD, or Podman, where
(virtual) SSD resources are managed with Linux’ cgroups [19],
ceroups provides various knobs for /O control; for
mple, to limit bandwidth [5]. to prioritize workloads, or
to do weighted sharing [66]. [84). isol-bench evaluates
all our survey-defined performance isolation desiderata for
cgroups using the fio workload generator
all YO control cgroups knobs, which are ic.prioc.class,
io.bfq.weight, io.max, io.latency, io.cost, and
io.weight. We present our key finding Note that
some knobs such as io.prio.class, io.bfqg.weight
or io.weight require /O schedulers or other cgroups knobs
to be active to have a performance effect: hence, we list these
as combinations in the table. From our analysis, we report that
io.cost achieves the highest level of performance isolation
on NVMe albeit with a small latency overhead beyond CPU
saturation.

‘We summarize our key contributions as follows:

« A survey on the definition of performance isolation for
data center storage, where we summarize the definition
to include performance overhead and scalability, pro-
portional fairn trade-offs between prioritization and

distilling a usable isolation definition that can be benchmarked
and quantified; specificall. we discuss tenants” performance

and ance isolation desiderata
and how to quantify them.

A. Tenant Performance Requirements

To evaluate performance isolation, we first need to under-
stand tenant i in terms of . In the
literature, we observe that such requirements are commonly
defined in terms of service-level objecti S

- [27). [30). B1). B5). (36). [40). [45). [46]. [49). [55).
Common SLOs include
throughput and bandwidth (average, minimum, maximum),
latency/slowdown (average, P99 tail, minimum, maximum,
CDF), and burstiness for throughput and bandwidth. Here,
throughput refers to operations per second and bandwidth
refers to 1/O bytes per second read from or written o the
SSD. Furthermore, in the cloud, many solutions allow select-
ing a performance profile (1]} [7). e.g.. provisioned
throughput/bandwidth and average/P99 latency. AWS EBS, for
example, has “provisioned fops,” which gives a non-guaranteed
approximation of expected throughput [2). Such profiles are
generally tied to volume size and are neither application-
defined nor guaranteed.

In this work, we do not use SLOs or profiles: instead, we
use the metrics they represent. Practitioners should be able to
pick SLOs/profiles according to their needs and a benchmark
should enable them to do so. In benchmarking, it is also
common to group applications together, for example, into
latency-sensitive (L-apps) and throughput-sensitive apps (T-
apps) [29). (75). L-apps have stringent requirements
on tail latency, such as caches. T-apps are batch workloads
with constraints on the total runtime or average throughput,
such as Al training. Other works classify their workloads
latency-critical (LC-app) and best-effort (BE-app) apps [T8].

16

Take-away message

1. Modern NVMe storage requires performance isolation.
o Low overhead, fairness, priority utilization trade-offs, priority

burst support
2. We introduce isol-bench, a performance isolation benchmark suite.

3. cgroups is Linux’s state-of-the-practice way to control isolation.
o 1/0 schedulers do not provide good isolation.
O jo.cost provides the best isolation.

m|risim
;s Paper: https://atlarge-research.com/pdfs/2025-iiswc-cgroups.pdf
Code: https://github.com/atlarge-research/isol-bench PDF

Supported by NWO, Graph Massivizer, and 6G FNS 17

VU

https://atlarge-research.com/pdfs/2025-iiswc-cgroups.pdf
https://github.com/atlarge-research/isol-bench

Further reading from our team

1. Zebin Ren, Krijn Doekemeijer, Nick Tehrany, and Animesh Trivedi. BFQ, Multiqueue Deadline, or Kyber?
Performance Characterization of Linux Storage Schedulers in the NVMe Era. In Proceedings of the 15th
ACM/SPEC International Conference on Performance Engineering (ICPE’24). 2024

2. Zebin Ren, Krijn Doekemeijer, Nick Tehrany, and Animesh Trivedi. Performance Characterization of Modern
Storage Stacks: POSIX I/0, libaio, SPDK, and io_uring. In Proceedings of the 3th Workshop on Challenges and
Opportunities of Efficient and Performant Storage Systems (CHEOPS’24). 2023.

3. Krijn Doekemeijer, Nick Tehrany, Balakrishnan Chandrasekaran, Matias Bjgrling, and Animesh Trivedi.
Performance Characterization of NVMe Flash Devices with Zoned Namespaces (ZNS). 2023 IEEE International
Conference on Cluster Computing (CLUSTER). 2023.

4. Animesh Trivedi, Matthijs Jansen, Krijn Doekemeijer, Sacheendra Talluri, and Nick Tehrany. Reviving Storage
Systems Education in the 21st Century — An experience report. In 24th IEEE/ACM International Symposium on
Cluster, Cloud and Internet Computing (CCGrid). 2024

5. Zebin Ren, Krijn Doekemeijer, Padma Apparao, and Animesh Trivedi. Storage-Based Approximate Nearest
Neighbor Search: What are the Performance Cost and I/O Characteristics?. In 2025 IEEE International Symposium
on Workload Characterization (IISWC). 2025.

VU 18

Backup slides

What to do next?

e Isolation for higher layers: file systems, caches
® Application-level isolation
e Combine knobs: e.g., io.cost + io.max

Background: cgroups

® In Linux all processes are part of a cgroup
® A cgroup, or control group, controls the resources its ‘

collective processes can use Root
® |/O control knobs limit storage resources

® cgroups is hierarchical _
e Intotal 5 knobs: 1 GiB/s 5 GiB/s

1. io.prio.class
a. Requires mg-deadline scheduler ‘ group-a.service
2. lo.bfg.weight

‘ group-b.slice

a. Requires BFQ scheduler ‘
3. io.max 10 GiB/s
4. io.latency
5. io.cost ‘ group-b.service
e Schedulers have high overhead

748 RocksDB a S
VU T 2

Example of a cgroups I/O knob: io.max

io.max allows setting max bandwidth (bytes) or throughput (operations) per cgroup

—

= — \With io.max

— o - \\ithout i0o.max
L

o

o ©

= <

o

=

o AN

C

(¢o}

m o

0 5 10 15 20 25
Time (seconds)

Latency CDF
(more to left is better)

ok
e

Desiderata 1: Low performance overhead

Bandwidth scalability with 7 SSDs

(higher is better)

Cumulative probability

io.max

io.latency

10.cost

MQ-DL

BFQ

Qo

no knob

=x

Bandwidth (GiB/s)
N

[\

VU¥

o L 1]
01 2 3 4 5 6 7 8 9 10
Latency (ms)

0
01 3 5 7 9 11 13 15 17

#workloads

Schedulers have high overhead!

Desiderata 1: Low performance overhead

Latency CDF
(more to left is better)

> 1.0]

.'.'g

—8 0.75 no knob
E.. io.max

2 0.5 io.latency
e ;

« 10.cost
Z0.25 MQ-DL
5 BFQ

p— 1 |
01 2 3 4 5 6 7 8 9 10
Latency (ms)

VU%?’ Schedulers have high overhead!

Bandwidth (GiB/s)

Bandwidth scalability with 7 SSDs
(higher is better)

ok
e

Qo

=x

S

[\

o—m————
01 3 5 7 9 11 13

#workloads

25

