
Does Linux Provide Performance Isolation for

NVMe SSDs? Configuring cgroups for I/O

Control in the NVMe Era

Krijn Doekemeijer, Zebin Ren, Tiziano De Matteis, Balakrishnan
Chandrasekaran, and Animesh Trivedi

https://krien.github.io/

1

The amount of data is ever-increasing

HPC
Machine
learning

1 Yottabyte
each year!

Databases
and caches

Serverless

1

Data centers use NVMe SSDs for fast storage

HPC
Machine
learning

Databases
and caches

Serverless

2

How fast is NVMe again?

HDD NVMe SDD

Key point: NVMe SSDs obsolete the decades-long rule that storage is slow.

Latency: ms
Bandwidth: KiB/s

Latency: us
Bandwidth: GiB/s

2

How fast is NVMe again?

HDD NVMe SDD

Key point: NVMe SSDs obsolete the decades-long rule that storage is slow.

Latency: ms
Bandwidth: KiB/s

Latency: us
Bandwidth: GiB/s

Problem: OS software is designed for slow storage and generally has
 high overhead as a result.

3

Data centers share NVMe storage resources
Key point: NVMe SSDs are shared by many workloads concurrently.

3

Data centers share NVMe storage resources
Key point: NVMe SSDs are shared by many workloads concurrently.

Problem: There is a need for performance isolation between workloads.

4

Can Linux enable low overhead performance isolation for NVMe SSDs out of

the box?

Key problem addressed in this work

?

5

1. What is storage performance isolation?

2. How to measure performance isolation?

3. What level of performance isolation is Linux capable of?

Open problems and contributions

5

1. What is the definition of storage performance isolation?

➢ A unified definition of storage performance isolation (survey)

2. How to measure performance isolation?

3. What level of performance isolation is Linux capable of?

Open problems and contributions

5

1. What is the definition of storage performance isolation?

➢ A unified definition of storage performance isolation (survey)

2. How to measure performance isolation?

➢ isol-bench, a performance isolation benchmark suite

3. What level of performance isolation is Linux capable of?

Open problems and contributions

5

1. What is the definition of storage performance isolation?

➢ A unified definition of storage performance isolation (survey)

2. How to measure performance isolation?

➢ isol-bench, a performance isolation benchmark suite

3. What level of low overhead performance isolation is Linux capable of?

➢ Evaluation and configuration exploration of state-of-the-practice

cgroups

Open problems and contributions

6

RQ1: What is storage performance isolation?

Using a survey of academic literature, we find a unified definition of isolation:

6

RQ1: What is storage performance isolation?

Available Bandwidth:

We explain isolation using the following illustration, where two tenants share an SSD’s
4 bandwidth shares

No knob KnobVersus

Using a survey of academic literature, we find a unified definition of isolation:

6

RQ1: What is storage performance isolation?

Using a survey of academic literature, we find a unified definition of isolation:

1. Low overhead

➢ latency, scalability, CPU

Low overhead High overheadVersus

6

RQ1: What is storage performance isolation?

Using a survey of academic literature, we find a unified definition of

isolation:

1. Low overhead

2. Proportional fairness

➢ Equal bandwidth
➢ Important if access patterns

are different, e.g., request size
➢ Jain’s fairness index

6

Unfair FairVersus

6

RQ1: What is storage performance isolation?

Using a survey of academic literature, we find a unified definition of isolation:

1. Low overhead

2. Proportional fairness

3. Priority utilization trade-offs

➢ Priority tenants
➢ Administrator wants utilization
➢ How to trade-off

priority against utilization?

Priority UtilizationVersus

6

RQ1: What is storage performance isolation?

Using a survey of academic literature, we find a unified definition of isolation:

1. Low overhead

2. Proportional fairness

3. Priority utilization trade-offs

4. Burst support

➢ Many workloads, e.g., serverless, are short running (ms)

7

RQ2: How to measure performance isolation?

We introduce isol-bench, a benchmark suite

Isolation
knobs

Low
overhead

Proportional
Fairness

Priority
utilization
trade-offs

Priority burst
support

For each measure independently

7

RQ2: How to measure performance isolation?

Important: not a single metric is returned as operator needs differ!

We introduce isol-bench, a benchmark suite

Isolation
knobs

Low
overhead

Proportional
Fairness

Priority
utilization
trade-offs

Priority burst
support

For each measure independently

8

Background: cgroups - Linux I/O control

● In Linux all processes are part of a cgroup
● A cgroup, or control group, controls the resources its collective processes

can use

group-a.service group-b.service

8

Background: cgroups - Linux I/O control

● In Linux all processes are part of a cgroup
● A cgroup, or control group, controls the

resources its collective processes can use
● I/O control knobs limit storage resources

○ e.g. io.max

group-a.service group-b.service

Max bandwidth =
1 GiB/s 10 GiB/s

8

Background: cgroups - Linux I/O control

● In Linux all processes are part of a cgroup
● A cgroup, or control group, controls the

resources its collective processes can use
● I/O control knobs limit storage resources

○ e.g. io.max
● cgroups is hierarchical

Root

group-a.service group-b.slice

group-b.service

5 GiB/s

10 GiB/s

1 GiB/s

8

Background: cgroups - Linux I/O control

● In Linux all processes are part of a cgroup
● A cgroup, or control group, controls the

resources its collective processes can use
● I/O control knobs limit storage resources
● cgroups is hierarchical
● In total 5 knobs:

1. io.max
2. io.latency
3. io.cost
4. MQ-DL
5. BFQ

Root

group-a.service group-b.slice

group-b.service

5 GiB/s

10 GiB/s

1 GiB/s

9

RQ3: What performance isolation is Linux capable of?

Using isol-bench we evaluate all four isolation desiderata for cgroups

9

RQ3: What performance isolation is Linux capable of?

Using isol-bench we evaluate all four isolation desiderata for cgroups, i.e., fill in ?

cgroup knob Low overhead Proportional
Fairness

Priority utilization
trade-offs

Priority bursts

MQ-DL ? ? ? ?

BFQ ? ? ? ?

io.max ? ? ? ?

io.latency ? ? ? ?

io.cost ? ? ? ?

9

RQ3: What performance isolation is Linux capable of?

Using isol-bench we evaluate all four isolation desiderata for cgroups, i.e., fill in ?

cgroup knob Low
overhead

Proportional
Fairness

Priority utilization
trade-offs

Priority bursts

MQ-DL ? ? ? ?

BFQ ? ? ? ?

io.max ? ? ? ?

io.latency ? ? ? ?

io.cost ? ? ? ?

We will discuss
these two as

examples

Question: Which knob provides most isolation?

10

● Workload generator: fio

○ Use one fio instance per client

● OS config: Linux 6.9, DIRECT_IO, no file system

● Run on 2 NVMe SSD models

○ 1–7 Flash medium: Samsung 980 pro

○ 1–7 Other medium: Intel Optane

isol-bench setup for cgroups

Fio
tenant 1

isol-bench

Fio
tenant N

11

Desiderata 1: Low performance overhead
Latency CDF

(more to left is better)

11

Desiderata 1: Low performance overhead

Schedulers have high overhead!

Latency CDF
(more to left is better)

12

Desiderata 2: Fairness

● Workload characteristics affect fairness!

○ Request size

○ Access patterns

○ Mixed reads and writes

● We give an example of request size (4 KiB and 256 KiB mixed).

13

Desiderata 2: Fairness
Jain’s fairness index for a mixed workload of 4 and 256 KiB

(Higher is better)

13

Desiderata 2: Fairness
Jain’s fairness index for a mixed workload of 4 and 256 KiB

(Higher is better)

io.max and io.cost lead to fairness
(for reference, a fairness of 0.5 can be a 100+MiBs difference)

14

Overall results

cgroup knob Low overhead Proportional
Fairness

Priority utilization
trade-offs

Priority bursts

MQ-DL ✗ ✗ ✗ ✗

BFQ ✗ ✗ ✗ ✗

io.max ✓ — — —

io.latency ✓ ✗ — ✗

io.cost — ✓ ✓ ✓

Desiderata achieved per knob:

14

Overall results

cgroup knob Low overhead Proportional
Fairness

Priority utilization
trade-offs

Priority bursts

MQ-DL ✗ ✗ ✗ ✗

BFQ ✗ ✗ ✗ ✗

io.max ✓ — — —

io.latency ✓ ✗ — ✗

io.cost — ✓ ✓ ✓

Desiderata achieved per knob:

I/O schedulers were already confirmed to have high overhead. Here we confirm that
they do not enable isolation either.

14

Overall results

cgroup knob Low overhead Proportional
Fairness

Priority utilization
trade-offs

Priority bursts

MQ-DL ✗ ✗ ✗ ✗

BFQ ✗ ✗ ✗ ✗

io.max ✓ — — —

io.latency ✓ ✗ — ✗

io.cost — ✓ ✓ ✓

Desiderata achieved per knob:

io.cost provides highest isolation, but occurs an overhead past CPU saturation.

15

What to do with our results

Our results show that practitioners:

1. I/O schedulers should be avoided for NVMe, even for isolation.

2. io.cost can be used for isolation instead.

a. Meta already uses io.cost in production.

16

More details/results in the paper…

17

Take-away message

1. Modern NVMe storage requires performance isolation.

○ Low overhead, fairness, priority utilization trade-offs, priority

burst support

2. We introduce isol-bench, a performance isolation benchmark suite.

3. cgroups is Linux’s state-of-the-practice way to control isolation.

○ I/O schedulers do not provide good isolation.

○ io.cost provides the best isolation.

Paper: https://atlarge-research.com/pdfs/2025-iiswc-cgroups.pdf
Code: https://github.com/atlarge-research/isol-bench

Supported by NWO, Graph Massivizer, and 6G FNS

https://atlarge-research.com/pdfs/2025-iiswc-cgroups.pdf
https://github.com/atlarge-research/isol-bench

18

1. Zebin Ren, Krijn Doekemeijer, Nick Tehrany, and Animesh Trivedi. BFQ, Multiqueue Deadline, or Kyber?

Performance Characterization of Linux Storage Schedulers in the NVMe Era. In Proceedings of the 15th

ACM/SPEC International Conference on Performance Engineering (ICPE’24). 2024

2. Zebin Ren, Krijn Doekemeijer, Nick Tehrany, and Animesh Trivedi. Performance Characterization of Modern

Storage Stacks: POSIX I/O, libaio, SPDK, and io_uring. In Proceedings of the 3th Workshop on Challenges and

Opportunities of Efficient and Performant Storage Systems (CHEOPS’24). 2023.

3. Krijn Doekemeijer, Nick Tehrany, Balakrishnan Chandrasekaran, Matias Bjørling, and Animesh Trivedi.

Performance Characterization of NVMe Flash Devices with Zoned Namespaces (ZNS). 2023 IEEE International

Conference on Cluster Computing (CLUSTER). 2023.

4. Animesh Trivedi, Matthijs Jansen, Krijn Doekemeijer, Sacheendra Talluri, and Nick Tehrany. Reviving Storage

Systems Education in the 21st Century — An experience report. In 24th IEEE/ACM International Symposium on

Cluster, Cloud and Internet Computing (CCGrid). 2024

5. Zebin Ren, Krijn Doekemeijer, Padma Apparao, and Animesh Trivedi. Storage-Based Approximate Nearest

Neighbor Search: What are the Performance Cost and I/O Characteristics?. In 2025 IEEE International Symposium

on Workload Characterization (IISWC). 2025.

Further reading from our team

20

Backup slides

21

What to do next?

● Isolation for higher layers: file systems, caches
● Application-level isolation
● Combine knobs: e.g., io.cost + io.max

22

Background: cgroups
● In Linux all processes are part of a cgroup
● A cgroup, or control group, controls the resources its

collective processes can use
● I/O control knobs limit storage resources
● cgroups is hierarchical
● In total 5 knobs:

1. io.prio.class
a. Requires mq-deadline scheduler

2. Io.bfq.weight
a. Requires BFQ scheduler

3. io.max
4. io.latency
5. io.cost

● Schedulers have high overhead

Root

group-a.service group-b.slice

group-b.service

5 GiB/s1 GiB/s

10 GiB/s

23

Example of a cgroups I/O knob: io.max

io.max allows setting max bandwidth (bytes) or throughput (operations) per cgroup

io.max= 4

B
an

d
w

id
th

 (
G

iB
/s

)
0

 2

4

 6

 8

 1
0 With io.max

Without io.max

0 5 10 15 20 25
Time (seconds)

24

Desiderata 1: Low performance overhead

Schedulers have high overhead!

Latency CDF
(more to left is better)

Bandwidth scalability with 7 SSDs
(higher is better)

25

Desiderata 1: Low performance overhead

Schedulers have high overhead!

Latency CDF
(more to left is better)

Bandwidth scalability with 7 SSDs
(higher is better)

